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ABSTRACT

The modeling of eddy current (EC) problems is not only helpful for the probe design and the

interpretation of measurement data, but also essential to the corresponding inverse problems.

In order to deal with high conductivity and low operating frequency, the conventional pure

numerical methods require large memory and long computing time to accurately solve EC

problems. In this dissertation, semi-analytical approaches are presented to efficiently solve a

series of EC problems in cylindrical polar coordinates.

By applying the truncation in an unbounded domain, the fields are expanded into a linear

combination of the eigenfunctions. Each eigenfunction belongs to different eigenvalue. The

expansion coefficients are determined by the continuity conditions at the interface between

different regions. For a given coil source, the semi-analytic solution of the fields in an unflawed

conductor can be obtained using this method.

The electromagnetic fields are expressed in terms of transverse electric and transverse mag-

netic modes. At a circularly cylindrical interface, these two modes are coupled with each other.

The coupling is considered in the borehole and tube problems. Then the concept is further ex-

tended into the borehole opening problem, in which the coupling between different eigenmodes

is added.

A well-developed crack model is used to solve the crack problems and estimate the impedance

change of an induction coil due to a thin crack in conductors. The thin crack is equivalent to

an electric current dipole source distributed over the crack region. An electric integral equa-

tion is constructed to solve this equivalent source, and the coil impedance change is predicted.

The dyadic Green’s kernel, which is required in the integral equation, is derived for different

structures.

Special numerical implementations are proposed to deal with the issues arising in our pro-

gram to make sure the calculation is accurate and the computational cost is small. The con-
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vergence of the series expansion is discussed. Methods used to compute the eigenvalues are

also investigated. Predictions of the probe signals show a good agreement with experimental

measurements in several examples. Compared to numerical methods, the approach is much

faster to get the results with same accuracy.
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CHAPTER 1. INTRODUCTION

It has been about three years since I started to think about the organization of my disser-

tation. When I went to the library, I noticed that there were a lot of dissertations that had not

been checked out for a long time, especially those related to engineering and technology. At

that time, I told myself that I should try to write a better dissertation. It is clear that we are

in an age where the knowledge is rapidly developed and a specific research field could be out of

date pretty soon. Besides this, the topic of a dissertation might be so narrow that only a few

people would be interested in it. I would like to try a different way to write my dissertation

and make more people feel it useful, even after a long time. Here is what resulted from these

thoughts.

As a graduate student, I keep warning myself that I should always do something meaningful

for myself and the others, even for our whole society. It is easy to lose the big picture when

we are buried in the details of a work, especially when we struggle in our trivial research

projects. Sometimes people make the same mistake several times and sometimes people keep

doing repeated work just because they get used to it. We do the same thing in our research

work and I believe there must be some books which teach people to avoid such behaviors and

make ourselves more productive. However, those suggestions always seem to be too impractical

for our own research work.

On the other hand, during my graduate study, all the dissertations I read just present their

own specific research work. They neither talk about the methodology used in their research,

nor give us a clear picture about the logic to their research work. For me, it is important to

know how they thought when they did their work, even though it might be just a simple logic

or idea. It is important because it could introduce us a new approach to tackle the similar

problems in another work; it is important because it could help us relate those abstract concepts
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in methodology and philosophy with our specific research so that we could make sure our logic

is well organized; it is important because it might remind us an approach that we missed before.

If we indicate our original logical relationship of the research work inside dissertations, it would

be more or less useful for the others, even for people who work in different research areas. If

everybody could do so, I believe our scientific society would benefit a lot. I don’t want my

dissertation to become one of those that have never been borrowed in the library. Therefore, I

will present my research ideas over here.

Some of the ideas are originally from my advisors, Dr. John Bowler and Dr. Jiming Song.

They inspired me a lot during our weekly discussions. The credits should be given to them.

During my graduate study, they did not just teach me ‘what, how and why’, they also taught

me how to think when I encountered a new problem and how to make sure my work is correct

and reasonable, i.e. the logical relationship of my thoughts. They are important guidance in my

research, although they are not creative viewpoints at all. This is another reason why I discuss

them in front of other chapters. I hope this could help readers understand my dissertation. I

am trying to demonstrate these thoughts from a rather macroscopic perspective, not cover too

many details. After all, I am supposed to present my own research work in this dissertation.

The contents of the research projects are started from Chapter 2.

1.1 From Simple to Complex

For a complex problem, we can reduce it into several simple models which focus on the

different aspects of the whole model, then grasp the fundamental principles by investigating

those simple models and finally solve the complex problem through combining the principles

learned from the simple models. Although this idea is pretty straightforward, it might be

neglected by people because it seems to take longer time to solve the whole project in this way.

As a matter of fact, it is the other way around and this approach is always an efficient strategy.

It helps us to concentrate on one specific issue each time and build the complex system step

by step to make sure we can have a good understanding of the complex model. It is also much

easier to locate the ‘bugs’ with this approach. Besides this, we can verify the final complete

model by reducing it to those simpler problems which have been solved before. In fact, people
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widely use this approach to design and analysis very-large-scale integrated (VLSI) circuit. I

used this approach through my research in which we tried to find the semi-analytical solution

of the wave interaction with a complex geometrical model.

The ultimate objective of my research project is to estimate the impedance change of an

eddy-current coil due to a thin crack around a rivet in a layered structure. The detailed descrip-

tion will be given later. As mentioned before, the difficulty comes from the wave interaction

with this complicated geometrical structure. The model actually involves wave interactions

with layered structure, borehole structure and conical structure. All of those structures are

actually fundamental and primary topics in the electromagnetic research and they all play

important roles in different applications, such as well logging interpretation, microwave circuit

design, and scattering from rough surface. In my work, the wave interaction with an infinitely

long borehole without other factors was investigated first, and then an infinitely long tube, an

extension of the borehole model, was solved. Finally the opening of a borehole was considered,

in which layered structure was added into the borehole model. The more complicated the ge-

ometry is, the more difficult the problem becomes. The structure of my dissertation is shown

in Fig. 1.1. The complexity increases from the bottom to the top.

For each geometry, the coil response due to a thin crack is estimated. In order to solve the

crack problems, the field for the same geometry in the presence of cracks is required in our

method. We refer to this field as incident field. This is quite similar to the ideas to calculate

the scattering field using equivalent theorem in electromagnetic theories. Thus, we actually

solve two types of problem for each geometry, incident field and coil response due to cracks.

They are not independent to each other. The way to find the incident field can be transplanted

to derive the Green’s function for a point source in the same geometry, which is used to get the

coil signal due to cracks. The crack problem is more difficult than the incident field calculation,

which means the problem is also getting complicated from left to right in Fig. 1.1. Thus, coil

response due to a crack around a borehole corner, which is the most difficult one among those

problems, is discussed at the end of my dissertation.
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Incident Field Crack Response

Appendix B
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Appendix D Chapter 4
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Chapter 6 Chapter 7

Figure 1.1: The structure of this dissertation and corresponding chapters. The shadow indicates

the difficulty and complexity of the problems. The darker color means a more complicated

problem.

1.2 Keep Everything Connected

My research work is mainly about electromagnetic simulation in eddy-current nondestruc-

tive evaluation. Theoretical models are formulated based on the physical principles, then a

computer code is written from the formulation and finally the models are verified by com-

paring simulation results from the code with experiment measurements. Apparently, physical

model, mathematical formulation and computer code have their own rules to follow. Numerical

accuracy issues never show up when we think about the model and formulation. The formula-

tion might have to be changed to different form to overcome some numerical issues. However,

for a good research work, these three aspects should be related to each other on all the levels.

Debugging code might take us a long time and we will waste lots of time on running some

useless codes if we are not careful enough. A good practice I learned is to keep the relationship

between codes and theories in mind while we are analyzing the simulation results. It could save

us an enormous amount of time and effort if we have a clear picture about our code and its

relation with the physical model. When I wrote the program for the tube problem in Fig. 1.1,
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I tried to do the work in this way. This idea did help me a lot. I tested and verified my code by

setting the outer radius of the tube model to a relatively large number. Therefore, the results

should get close to those calculated from borehole geometry. Meanwhile, the reflection matrix

also approaches to the one in the borehole calculation, so does the incident field. It makes code

debugging become easier. This is also an important difference between scientific programming

and the software application programming.

1.3 Organization

The dissertation is organized as follows. Chapter 2 introduces fundamental concepts used

in eddy current nondestructive evaluation and backgrounds of my research projects. Chapter 3

presents a literature review on general EC NDE problems. Special attention is paid to the

problems solved in cylindrical polar coordinates. Chapter 4 presents a theoretical model used

to predict the probe signal due to cracks in a infinitely long borehole with the aid of method of

moments. Numerical implementation is studied to accelerate the algorithm. Series convergence

issue is also discussed in this chapter. The model is extended to a tube problem in Chapter 5.

Transmission and reflection coefficients due to a multi-layered structure are derived. Incident

field of a coil near a borehole corner is solved in Chapter 6. Methods used to compute eigenvalues

from a complex transcendental equation are discussed. Impedance change and eddy-current

distribution are calculated as a function of the coil position. In Chapter 7, coil response due

to a crack around the opening of a borehole is considered. Conclusions are given in Chapter 8.

Necessary mathematical formulas used in this dissertation are summarized in Appendix A.

Incident field calculation and coil response estimation of a bobbin coil above a half-space

conductor are derived in Appendixes B and C, respectively. The eddy-current distribution

due to a rotary coil inside a borehole is provided in Appendix D. A paper related to boundary

element method in two dimensional eddy current problems is given in Appendix E for reference.
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CHAPTER 2. OVERVIEW

Nondestructive Evaluation (NDE) is an interdisciplinary field concerned with the study of

analysis and measurement technologies for the quantitative characterization of materials, tis-

sues and structures by noninvasive means. Acoustic, ultrasonic, radiographic, thermographic,

electromagnetic, optic, and visual inspections are employed to probe interior structure or char-

acterize subsurface features of the object. It plays an important role in noninvasive medical

diagnosis, security screening, and manufacturing process control, as well as the traditional NDE

areas of flaw detection, structural health monitoring, and materials characterization.

Compared with other NDE methods, eddy-current nondestructive evaluation (EC NDE)

is an effective approach to detect flaws in conductors and inspect the characterization of con-

ductive materials. It has wide applications in material, aerospace, petroleum, nuclear, and

manufacturing industries. In order to formulate and solve the problems involving wave inter-

action with conductors, traditional electromagnetic theories are needed. However, there are

some special properties for EC NDE problems. In this chapter, those electromagnetic and

mathematical fundamentals used in this dissertation are summarized for reference.

2.1 Introduction to Eddy Current Nondestructive Evaluation

According to Faraday’s law, electromotive forces (EMFs) are induced in a conductor by

a time-varying magnetic field. These electromotive forces give rise to the circulating flows of

electrons, or currents, within the body of the conductor and the current flows are called eddy

currents, which is also referred to as Foucault current. Eddy current was first observed by a

French physicist, François Arago in 1824 even though the complete explanation was given by

Michael Faraday in 1831. Like all other electric current, eddy currents generate heat as well as
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electromagnetic forces. The induction heating can be used for metallurgical treatment, welding

and melting furnaces. The electromagnetic forces have applications in linear induction motors,

eddy-current brake, and the flow of molten metals.

When an alternating current (AC) flows in a coil in close proximity to a conductor, the

magnetic field of the coil will induce eddy currents in that conductor. Lenz’s law tells us the

direction of the current flow is such that the induced magnetic field produced by the eddy

currents will oppose the change in the original magnetic field. Consequently, the secondary

induced magnetic field generated by the eddy currents will affect the loading on the coil and

thus its impedance. Therefore, the variations of these eddy currents can be monitored by

measuring impedance changes from the coil. Variations in the electrical conductivity, magnetic

permeability, homogeneity of the conductor or the presence of any flaws, cracks, and corrosion

inside the conductor, will cause a change in eddy currents and corresponding impedance change

of the coil. This is the basic principle of eddy-current nondestructive evaluation.

The early use of eddy currents to detect differences in conductivity, magnetic permeability,

and temperature was initiated by E. Hughes in 1879. The first eddy-current instruments was

developed by H. Knerr, C. Farrow, T. Zuschlag, and Fr. F. Foerster from 1935 to 1940 [1]. Since

then, EC NDE has been widely used in the aerospace, nuclear, and manufacturing industries for

inspecting properties of the conductive material and detecting flaws in metallic components at

relatively low frequency. One of the most interesting examples is the counterfeit coin detection

in vending machines. A coin rolls past a stationary magnet, and the induced eddy current

slows its speed. The strength of the eddy currents, and thus the retardation, depends on the

conductivity of the coin’s metal. Counterfeit coins are slowed to a different degree than genuine

coins, and then they are sent into the rejection slot.

Theoretical modeling of EC NDE problems can be utilized for the coil design, operating

frequency selection, interpretation of inspection data and even for estimating flaw size and its

geometry. Cylindrical structures, such as bolt hole, cylinder, and tube, are most commonly

used metallic components in various industries and cracks frequently occur in those compo-

nents. Cylindrical surface is a critical region where cracks can initiate in the components under

stress. Thus, it is necessary to study the modeling of EC NDE problems in cylindrical polar
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coordinates.

2.2 Electromagnetic and Mathematical Backgrounds

This section presents fundamental electromagnetic theories used in this dissertation. Math-

ematical methods are also discussed for the subsequent derivation. We will focus on the eddy-

current problems, electromagnetic fields in close proximity to conductors at low frequencies.

2.2.1 Maxwell’s Equations in Quasistatic Regime

Like all other electromagnetic phenomena, EC NDE problems are governed by Maxwell’s

equations. In this dissertation, we only consider configurations which involve conductors with

high conductivity instead of dielectrics and these conductors could be magnetic material. Com-

paring to scattering problems due to dielectrics, the operating frequency of EC problems is rel-

atively low (usually less than 10 MHz) and it turns out that the displacement current ∂D/∂t,

can be neglected in the calculation [2]. Therefore, for EC problems, Maxwell’s equations have

a slightly different form [3],

∇×E(r, t) = − ∂

∂t
B(r, t), (2.1)

∇×H(r, t) = J(r, t), (2.2)

∇ ·D(r, t) = ρ(r, t) (2.3)

∇ ·B(r, t) = 0, (2.4)

where E(r, t) is the electric field intensity (V/m), H(r, t) is the magnetic field intensity (A/m),

D(r, t) is the electric flux density (C/m2), B(r, t) is the magnetic flux density (Wb/m2), J(r, t)

is the current density (A/m2), and ρ(r, t) is the electric charge density (C/m3). All the fields

are functions of position in space, r and time, t. Equations (2.1)–(2.4) are well-known Faraday’s

law, Ampère’s law and Gauss’ law, respectively.

For a time-harmonic field with certain angular frequency ω, we can, in general, relate the

instantaneous field to their phasor form by

E(r, t) = Re
{
E(r)e−ıωt

}
, (2.5)
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where Re {·} denotes the real part of a complex quantity. e−ıωt is the time convention used

to denote the time harmonic dependence and ω is the angular frequency. With this notation,

Maxwell’s equations can be expressed in terms of phasor form

∇×E(r) = ıωB(r), (2.6)

∇×H(r) = J(r), (2.7)

∇ ·D(r) = ρ(r) (2.8)

∇ ·B(r) = 0. (2.9)

From now on, the phasor form is adopted through this dissertation. In other words, we only

discuss time-harmonic solution here.

The conservation law for current density can be derived from Ampère’s law by taking the

divergence of (2.7)

∇ · J(r) = ∇ · ∇ ×H(r) = 0. (2.10)

This implies eddy current is irrotational inside a conductor. We could imagine the flow of eddy

current inside a conductor as the water flow inside a river.

From the Ampère’s law (2.2) and Gauss’ law (2.4), it looks like we are solving magneto-

static problems. One should keep in mind that the magnetic field produced by a coil has to be

time-varying in order to induce eddy current inside the conductor. That’s why people use the

term ‘quasi-static’, instead of ‘static’ [2].

2.2.2 Constitutive Relations in Conductors

Constitutive relations provide the macroscopic relations between the flux and corresponding

field. For a homogeneous isotropic conductor,

B = µH, (2.11)

J = σE, (2.12)

where scalars, µ and σ are the permeability and conductivity of the conductor, respectively.

The conductor could be inhomogeneous, nonlinear, anisotropic or dispersive media. In those
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cases, µ and σ have other forms, such as tensor form for anisotropic conductors or a function

of frequency for a dispersive conductor. Normally, cracks in a conductor are considered as

air-filled gap which is nonconductive. As we mentioned before, electric flux density D = εE

will not be considered due to the low frequency and high conductivity.

2.2.3 Boundary Conditions

For a interface separating two regions, such as the interface between conductors and air,

the boundary conditions are as follows

[Et] = 0, (2.13)

[Ht] = Js, (2.14)

[Bn] = 0, (2.15)

where subscript t denotes the tagnetial components and n denotes the normal component of a

field. Operator [·] stands for the jump of the quantity at the interface. If the media have finite

conductivities, surface current density, Js vanishes and (2.14) is simplified to

[Ht] = 0. (2.16)

If one region is a conductor and another one is free space, the normal component of current

density inside the conductor vanishes at the surface because displacement current is neglected

in the nonconductive region. Thus, we have that

Jn = 0. (2.17)

This boundary condition can be used to describe the behavior of eddy-current flow in the

presence of nonconductive cracks, which is like the water flow around an objector inside the

river. However, surface charge is still at the conductor surface. In fact, charges are not conserved

in the quasistatic regime.

2.2.4 Auxiliary Vector Potentials

As mentioned in Section 2.2.1, the electromagnetic vector fields satisfy Maxwell’s equations.

In order to solve the fields for a three-dimensional problem, it is more convenient to introduce
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auxiliary potentials. Based on the fact that the divergence of a curl is zero, ∇ · (∇×A) = 0,

the magnetic vector potential A is defined as

B = ∇×A, (2.18)

and the electric field can be written as

E = ıωA−∇φ, (2.19)

where electric scalar potential φ could be any scalar function because ∇ × ∇φ = 0. The

electric scalar potential is uniquely determined by a suitable condition, which is so called gauge

condition. There are different definitions of gauge condition. For example, Lorentz gauge is

defined as

∇ ·A = µσφ. (2.20)

Similarly, the electric vector potential T and the electric field have the relationship

J = ∇×T, (2.21)

and the corresponding magnetic field can be written as

H = T−∇Ω, (2.22)

where Ω is the magnetic scalar potential and it is determined by a gauge condition. There

are some other formulations based on alternative potentials used to describe EC problems in

numerical approach. Detailed discussion and analysis about the vector potentials are given in

[4, 5].

Another pair of useful scalar potentials are the transverse electric (TE) and transverse

magnetic (TM) scalar potentials. A solenoidal (divergence free) vector field can be split into

two parts, solenoidal and irratational parts, and we can introduce the second-order vector

potential (SOVP) W as

A = ∇×W, (2.23)

where W has the following form

W = uWa + u×∇Wb. (2.24)
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Here, Wa is the transverse electric scalar potential and Wb is the transverse magnetic scalar

potential with respect to the direction u. With an appropriate choice of unit vector u, these

two scalar quantities, Wa and Wb can be separated and a general solution for each potential

can be constructed with the separation of variables method for some simple geometrical shapes

in Cartesian coordinates. However, it is difficult to do that in curvilinear coordinate systems,

such as cylindrical and spherical coordinates, in which some components are coupled because of

the boundary conditions at the curved surface. The detailed discussion is given in Chapter 4.

2.2.5 Skin Effect and Skin Depth

It is well known that an uniform plane wave propagating along r direction can be written as

eık·r. The wave number k, which is normally solved from Maxwell’s equations, could be a real

number for wave propagation or a complex vector for both attenuation and propagation. Skin

depth is a critical parameter when we are talking about EC problems, in which the attenuation

is significant. The skin depth is defined as the distance that the fields must travel in a conductor

to reduce its magnitude to e−1 = 36.8% [3]. For a good conductor, the skin depth can be easily

derived from the behavior of an uniform plane wave in an unbounded lossy medium under the

assumption that ( σ
ωε

)2
� 1. (2.25)

With this assumption, the wave number is approximated as

k2 ≈ ıωµσ and k = ±
√
ωµσ

2
(1 + ı). (2.26)

Substituting k back into the plane wave form, skin depth δ can be calculated according to the

definition

δ =

√
2

ωµσ
. (2.27)

It is interesting to notice that the corresponding wave length λ in the conductor is

λ = 2πδ, (2.28)

which means a wave length is roughly six times longer than the skin depth, Fig. 2.1.
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Figure 2.1: Wave behavior inside a conductor and the relationship between skin depth and the

wave length. A snapshot of the electrical field inside a half-space conductor. The skin depth is

δ = 1 mm. The dash line shows the magnitude change of the wave in the conductor.

Skin depth is associated with a phenomenon called skin effect, which is the tendency of an

alternating current to distribute itself within a conductor with the current density being largest

near the surface of the conductor. According to (2.27), skin depth is inversely proportional

to the square root of the angular frequency. As the operating frequency increases, the eddy

current density induced in a conductor will be confined to an increasingly thin layer near the

conductor surface. This is the reason why the operating frequency in EC NDE can not be too

high.

Skin effect is also one of the reasons why EC problems are difficult in general. The expo-

nentially decreasing fields would easily cause numerical trouble while we are using numerical

approaches to solve the problem. It is different from typical scattering problems where the field

doesn’t vary dramatically. In EC problems, one has to consider the numerical accuracy and

other issues.

2.2.6 Reciprocity Theorem

Reciprocity theorem is frequently used for the EC problems, in which there are always

two sources existing, the current source in the coil and the induced current in the conductor.

In our theoretical model, the coil impedance change is always derived based on this theorem.
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Reciprocity theorem states that the reaction between a current source and the resulting electric

field is unchanged if one interchanges the points where the current is placed and where the field

is measured [3]

∇ · (E1 ×H2 −E2 ×H1) = 0, (2.29)

where subscripts 1 and 2 denote the fields due to two sets of sources.

2.2.7 Truncated Region Eigenfunction Expansion Method

In general, there are three methods used to solve Maxwell’s equations, analytical methods,

approximation methods, and numerical methods. The method we adopted is actually a com-

bination of analytical method and numerical method, which is called semi-analytical method.

In these classical methods, analytical solution is accurate and fast, but it is only accessible

for some simple symmetrical two-dimensional structures, such as a half-space problem, an

infinitely long cylinder, or a sphere. Although it is difficult to get an analytical solution for the

electromagnetic problems with complicated geometry, truncated region eigenfunction expansion

(TREE) method provides a practical way to deal with some of them and it keeps the advantages

of analytical methods. In a TREE method, domain truncation is typically applied to a domain

dimension that is infinite according to the original problem definition. Limits are imposed in

the infinite spatial dimension by adding artificial boundaries and forcing the solution to be a

given value there. Only certain discrete eigenmodes can be supported within the truncated

region. The analysis of a shielded microstrip line is an example of such consideration.

The solution in a truncated dimension can be expressed as a series expansion of eigenfunc-

tions rather than as an integral over the whole spectrum and these eigenfunctions correspond

to the different eigenvalues. In order to get an approximate solution to the original problem,

the imposed boundaries should have little or no influence on the final solution we concern.

Normally, this method gives rise to errors but these errors can be made as small as desired by

adjusting the location of the imposed boundaries.

Several boundary conditions can be used as truncation boundaries in electromagnetic prob-

lems, such as perfect electric conductor (PEC), perfect magnetic conductor (PMC), and perfect

matched layer (PML). For a specific problem, we should choose he ones which make the so-
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lution much simpler. The functions over a truncated domain generally can be expanded into

periodic functions due to the truncation boundary conditions. The truncation boundary con-

ditions should be chosen to make the expanded function as smooth as possible so that the

discontinuity of the expansion could be avoided.

In this dissertation, TREE method is applied to all the structures, even for some simple

cases which could be solved without truncation. As we discused in Section 1.1, the reason

is that we hope our method can be extended from simple geometrical shapes to the complex

models, so that a complex problem can be reduced to the simple ones for the validation. The

consistency of using TREE method makes the extension possible.

2.3 Introduction to the EC NDE Problems

A schematic of a typical EC NDE problem is shown in Fig. 2.2. A coil, which generates

original magnetic field, induces eddy currents in a conductive test-piece in the present of flaws

or cracks. The coil is driven by a time-harmonic voltage and the impedance of the coil is

measured by an impedance analyzer, which is not shown in the figure. When the coil is isolated

from any conductor, we annotate the impedance as Z0 and ideally it should be pure induction,

imaginary number, if we neglect the wire resistance, as shown in the left part of Fig. 2.3. The

coil impedance changes to Z in the presence of the test-piece but without the cracks, the middle

of Fig. 2.3, and to Zc with the cracks, the right part of Fig. 2.3. The impedance change is

defined as ∆Z = Z −Z0 for the cases in the absence of cracks and ∆Zc = Zc −Z for the cases

in the presence of cracks. The difference due to the conductor or the cracks could be observed

Coil

Conductor

Crack

Figure 2.2: Schematic of a typical eddy-current nondestructive problem. A bobbin coil above

a conductive plate with a surface-breaking crack.
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Z0 = X0 Z = R+ X Zc

air

metal
crack

Figure 2.3: Definitions of coil impedance and its change. The coil impedance change is defined

as ∆Z = Z − Z0 for the cases in the absence of cracks and ∆Zc = Zc − Z for the cases in the

presence of cracks.

from ∆Z or ∆Zc.

Normally the coil impedance is normalized with respect to the reactance of the isolated

coil, X0, and plotted on the impedance plane diagram. The normalized coil impedance for a

bobbin coil above a half-space conductor are plotted in Fig. 4.3. The solid lines show the coil

impedance as a function of frequency for different coil lift-offs. The dashed lines represent the

coil impedance as a function of lift-off for different frequencies. As the lift-off increases or the

frequency decreases, the impedance tends towards to the coil impedance in air, which is called

‘air point’. The dotted line shows the coil impedance on the impedance plane due to a crack

in the conductor.

The impedance can be derived from the definition of the electromagnetic power. Combining

with reciprocity theorem (2.29), the impedance change of a coil due to a crack in a conductor

can be written as [6]

∆Zc =
1

I2

∮
S

n ·
(
E(s) ×H(0) −E(0) ×H(s)

)
dS, (2.30)

where the superscript (0) denotes the fields without cracks, the superscript (s) denotes the ones

with cracks and I is the magnitude of the coil current. The integration surface, S, could be any

surface enclosing the crack. This formula not only can be used to find the impedance change

due to crack, ∆Zc, but also can be used for any inhomogeneous part of the geometry, even

the impedance change from the conductor itself, ∆Z. For the calculation of coil impedance

change in the absence of cracks, ∆Z, the integration surface becomes the surface enclosing

the conductor. In that case, superscript (0) denotes the field in the absence of the conductor

and the superscript (s) represents the fields in the presence of the conductor. Alternatively,
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Figure 2.4: Impedance plane diagram for a bobbin coil above a half-space conductor. The

coil size and the conductivity of the test-piece are listed in Table 4.3. Solid lines represent the

complex impedance of the probe as a function of frequency. Dash lines represent the impedance

as a function of coil lift-off, λ. The dotted line represents the coil impedance due to a crack.

the crack can be regarded as an equivalent electric dipole source and we can derived another

expression for the coil impedance change through reciprocity theorem. The detailed discussion

is provided in Section 4.2.3.

As mentioned before, skin effect could bring some numerical trouble in EC calculation.

Compared to the typical scattering problems, another difference is that the coil is normally

pretty close to the test-piece. Therefore, the far-field scattering theory used in other electro-

magnetic applications, such as antenna simulation, could not be applied to the EC problems.

Normally, the near-field interaction is more complicated.

2.4 Statement of the Problem

In recent years, many in service aircrafts have exceeded their design lifes and the mainte-

nance of these aging aircraft structures becomes a worldwide issue. One of the most important
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issues in aeronautic inspection is to detect embedded cracks located in the fastened structures.

The fatigue cracks can initiate at corroded rivet holes and the location of crack initiation de-

pends upon the local stress distribution. These fatigue cracks must be detected and repaired

before they lead to catastrophic failure. The demand for a fast, low cost and reliable monitor-

ing system to ensure the functionality of the crack detection in such structures is increasing.

A three-dimensional electromagnetic model for eddy current fastened structures inspection is

needed to meet this demand [7, 8, 9, 10, 11].

As shown in Fig. 2.5, the cracks around a rivet is actually a complex structure and a

systematic approach has to be built to solve this problem. First of all, the model is simplified

as cracks around a borehole in the layered conductors. The structure of corner cracks at the

borehole opening considered as the further simplification. Finally, the problem is reduced to the

cracks inside a infinitely long borehole in a conductor. All of these problems include cylindrical

structures, such as bolt hole, cylinder or tube. Therefore, the study of EC NDE problems in

cylindrical polar coordinates becomes an important subject. For each problem, the modeling

of EC NDE involves two related configurations:

• Incident field for the structure in the absence of cracks: The first parts solves the problems

with basic conductive geometries in the absence of cracks. The solution can be used not

only for the incident field in the probe-defect interaction, but also for the characterization

of the conductor with the same structure.

Bobbin Coil

Rivet

Crack

Figure 2.5: Two-layer aircraft structure with cracks emanating from a fastener hole.
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• Probe signal due to cracks in a conductor : The probe-defect interaction is considered in

this part. In general, the cracks are modeled as air-filled gap with given shape and it

is equivalent to a secondary source. Then the Green’s function is derived for a singular

source in the similar structure. Finally, the coil impedance is calculated using volume

integral method.

Although we have not completely solved the fastened structure yet, the systematic approach

used in this research has already provided us a good understanding of the final problem. The

models of cracks in the infinitely long borehole and tube have been finished and the result

shows a good agreement compared with experimental measurements. The incident field of a

coil around the opening of a borehole has also been solved using the same method. Finally, the

coil signal due to a corner crack near the opening of a borehole is discussed.

It is worth mentioning that our approach can be easily extended into other cylindrical

configurations, such as oil pipeline in petroleum industry and nuclear reactors in the nuclear

power stations.
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CHAPTER 3. LITERATURE REVIEW

Like other electromagnetic problems, EC NDE problems can be solved using either ana-

lytical methods, approximation methods, or numerical methods. For a problem with simple

geometrical configuration, analytical solution may be written into a closed form with an integral

expression. With the TREE method, semi-analytical solution may be available for some more

complicated problems. Appropriate approximation, such as thin-skin theory, can be applied to

certain special problems, in which analytical solution can not be found. On the other hand,

numerical methods are more flexible and can handle more special and complicated configura-

tions. However, because of the skin effect in quasi-static regime, it requires a large amount of

unknowns and usually takes long time to compute, even for some simple structures.

A brief literature review about EC NDE problems is given in this chapter. Especially, a

survey of EC problems in cylindrical coordinate system is also summarized. Other topics in

EC NDE, such as inversion, imaging and reconstruction is not covered here. We will focus on

the forward problems and the electromagnetic approaches to present the fundamental theory

development in EC NDE.

3.1 Analytical Methods

In this section, analytical methods for the incident field calculation are discussed first. Then

the modeling of flawed test-piece is considered. Again, it should be noticed that the solution of

the unflawed test-piece can be used as the incident field for the probe-flaw interaction modeling.

In addition, some of these methods could be extended to derive the Green’s function from the

same structure with cracks, which is a critical step to find the coil signal due to cracks in our

theoretical models.
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3.1.1 Modeling of Incident Field

Two classical axially symmetric probe-conductor problems were first solved by Dodd and

Deeds with the closed-form solutions in 1968 [12]. One was for a rectangular cross-section coil

(bobbin coil) above a semi-infinite conducting slab covered with another uniform conductor

layer and another one was for a rectangular coil encircling an infinitely long circular conductive

rob with uniform metal coating. This paper developed an important analytical method to

analyze the real EC problems. The essential point was to work out the magnetic vector potential

of a circular filament and then derive the coil field by using the superposition principle. Later

the same idea was applied to other symmetrical configurations, such as multilayer plates solved

by Burke et al. [13, 14, 15], concentric spherical shells by Luquire et al. [16, 17], and coaxial

cylinders by Dodd et al. [18, 19].

The theory of eddy currents induced by a non-symmetric coil above a conducting half space

was proposed by Beissener and Sablik in 1984 [20]. That was a generalization of the work

from Dodd and Deeds for axisymmetric current sources. The effect of coil orientation on the

eddy-current distribution was also demonstrated in that work. Impedance of a horizontal coil

(or tangent coil, the axis of the coil is parallel to the conductor surface) above a half-space

conductor was derived by Burke [21]. A thin-skin approximation and a closed-form solution

of this problem were presented in that work. The mutual impedance of air-cored coils located

above a conductive plate was considered by Burke and Ibrahim in 2004 [22]. The results for

different orientation of the individual coil were discussed. Theodoulidis derived a closed-form

expression for a cylindrical eddy-current probe coil located with an arbitrary tilt angle above a

conductive half space [23]. This work helps us to understand the noise in eddy-current surface

inspection due to an unexpected tilt of the probe.

There was some work related to ferrite-cored probes. A model of an axisymmetric probe coil

with a cylindrical ferrite core in the presence of a layered conducting half space was developed

with the aid of radial truncation by Theodoulidis [24, 25].

Eddy-current induction in an uniaxially anisotropic plate, where the axis of uniaxial anisotropy

was lying in a plane parallel to the surface of the plate, was another interesting work done by
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Burke [26]. In this approach, the fields were expressed in terms of Hertzian potentials, which

is similar to SOVP. The half-space problem involving both electrical anisotropy and magnetic

anisotropy was derived by Zhou and Dover in 1998 [27]. This method can be extended to the

layered electromagnetic induction problems.

TREE method was widely applied to EC problems in the past decades [28]. Usint this

method, series expansion for simple configurations were presented by Theodoulidis in 2005

[29]. Problems with complicated geometrical configuration in Cartesian coordinates, such as

right-angled wedge [30, 31] and edge of conductive plate [32], have also been solved by Bowler

and Theodoulidis.

3.1.2 Modeling of Probe-Crack Interaction

Except a few cases with simple two-dimensional configuration, such as semi-infinite crack

with a sharp tip, square corner [33], and infinite long cylinder containing a radial surface crack

[34] solved by Kahn and Spal et al., it is impossible to get a closed-form solution for the crack

problems, especially for the three dimensional configurations. Electromagnetic methods for EC

problems were summarized by Kriezis et al. in 1992 [5], Lewis [35], and Auld and Moulder in

1999 [6].

Compared to the closed form, semi-analytical solution is accessible for more general crack

problems. For instance, eddy current interaction with cracks in a thin plate which thickness

is small compared with the skin depth was presented by Burke in 1988 [36]. In general, a

semi-analytical solution has to be obtained more or less with the aid of approximation, from

physical model to mathematical calculation. For example, perturbation method was applied to

the low-frequency EC analysis by Harfield [37] and a long coil with a slot in a conductive plate

was solved with TREE method by Theodoulidis and Bowler in 2005 [38].

One of the most important crack models is the ideal crack, which has infinitesimal thickness

but forms a perfect barrier to eddy currents. By considering continuity boundary conditions,

the ideal crack can be represented by an equivalent secondary source consisting of a layer of

current dipole directed normal to the crack surface as stated by Bowler [39, 40]. The equivalent

surface source could be found by the method of moments using Green’s function. The model
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can be extended to the volumetric flaw and volume integral formulation by Bowler et al. [41].

It turns out this is an accurate and efficient method to estimate the coil response due to cracks.

Comparison of two boundary integral formulations based on electric field and magnetic vector

potential were also discussed by Bowler et al. in 1997 [42].

3.1.3 Thin-Skin Theory

At high frequency, induced eddy current can be thought of as occupying a relatively thin

layer near the surface of a test-piece because of the skin depth is much less than the relevant

dimension of the surface defect. Within thin-skin limit, it is possible to solve the impedance

change of a coil due to surface-breaking cracks [43, 44], long cracks [45, 46, 47], semi-elliptical,

and epicyclic cracks [48] in a half-space conductor.

3.2 Numerical Methods

Ideally, a good numerical method could manipulate any structure regardless of geometrical

complexity, homogeneity and type of coils. It could also be designed to compute the incident

field for a specific structure. For example, some numerical methods are developed especially for

the structures involving ferrite cores. A model of a three-dimensional axisymmetric probe coil

with a linear isotropic ferrite core in the presence of a conducting half space was developed by

Sabbagh using the method of moments [49]. In that model, a volume integral equation based

on the magnetic induction field and the induced magnetization was introduced. Any arbitrarily

shaped bodies-of-revolution, such as the E-shaped core (cup-core) and the coil with truncated

ferrite cylinder could be solved with this model. The field calculation for single- or multilayer

coaxial cylindrical shells of infinite length with an arbitrarily oriented inside source were solved

using electric vector potential and the magnetic scalar potential by Antonopoulos et al. [50].

Another simulation code, which can handle ferrite core, was developed with a rigorous volume

integral formulation based on the dyadic Green’s functions by Buvat et al. [51]. This model

was fast because it had the advantage that only the ferrite core needs to be discretized and not

the entire space.

Typically a numerical approach involves the following four basic steps.



www.manaraa.com

24

1. Definition of the problem region.

2. Formulation of the specific fields or potentials over the defined region.

3. Derivation of matrix equations whose solution gives numerically an approximate field.

4. Solution of the matrix equations and post-processing.

For a given problem, different formulations could be derived based on the choice of the fields as

unknown variables. Comparison between different sets of potentials used in numerical methods

was given by Nakata et al. in 1988 [52] and Kriezis et al. in 1992 [5].

Three most fundamental numerical approaches are finite difference method (FDM), finite

element method (FEM), and method of moments (MoM). In order to obtain correct solution

using FDM, it requires fine mesh structure and a large number of unknowns in EC NDE

problems because of skin effect. FDM is not as widely used today as in the past, thus we only

discuss the other two methods here.

3.2.1 Finite Element Method

Finite element method is an extension of the Rayleigh-Ritz technique by constructing co-

ordinate functions whose linear combinations approximate the unknown solutions. An appro-

priate variational formulation can be chosen to set up a system of sparse matrix equations for

two dimensional done by Ptchelintsev and de Halleux [53] and three dimensional EC problems

by Badics et al. [54, 55]. FEM has the same issue as FDM. It requires a large number of un-

knowns to solve the problem, which dramatically increases the computational cost. In order to

overcome this difficulty, an efficient techniques of solving matrix equations for two dimensional

finite element analysis was proposed by Nakata et al. [56]. The use of nodal finite element in

FEM may have difficulties when applied to highly permeable and sharp corner. Comparison

for formulations of edge finite elements based on different vector and potentials unknowns was

provided by Biro in 1999 [57].
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3.2.2 Method of Moments

Method of moments is one kind of weighted residual methods. Green’s functions have to be

derived based on the choice of equivalent sources. Then an integral equation is set up to form

the matrix equation from which the equivalent sources can be obtained. Compared to FDM

and FEM, MoM does not require to discretize the whole solution domain if the specific Green’s

function is available. Thus, the computational cost can be reduced a lot.

Green’s function is a critical part for the MoM. Therefore, appropriate Green’s functions

with relatively small solution domain were derived for specific configurations, such as a half-

space conductor by Bowler [58] and a long tube by Barlow [59]. The time-domain Green’s

functions for a transient field solution were sought in EC problems for a half space [60], a plate

[61] or a half space with injected currents at the surface [62] by Bowler et al.

For a flaw inside a conductor, the solution is available by using volume integral formulation.

A summary was given by Mckirdy [63]. The method to calculate EC pattern in a planar layered

conductor affected by a localized inhomogeneity of an arbitrary geometry was developed with

a full-wave vector domain integral formulation by Reis et al. [64].

Boundary element method (BEM) is also an efficient way to deal with EC problems. It

is applicable for two dimensional problems done by Kahn et al. [65, 66] and flaw detection in

three dimensions done by Dezhi et al. [67]. Boundary integral can be derived based on electric

and magnetic fields [68, 69] or different vector potentials [70, 71]. Boundary integral vector

potential formulation with weak singularity kernel has also been developed by Yoshida [72].

Impedance boundary condition was utilized to analyze eddy current far away from the edge

of conductor by Ishibashi [73]. An improvement of the ideal crack model taking into account

the inclination, the conductance, and the low thickness of the crack was presented by Beltrame

[74]. Fast multipole method has also been introduced to accelerate the BEM calculation in

two-dimensional EC problems by Yang and Song [75, 76]. An improved boundary integral

equation (BIE) is developed for the EC problems with Dirichlet boundary condition by Xie

and Song et al. [77].
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3.3 Modeling in Cylindrical Coordinates

Conductive half space and plate are two typical EC problems that people have solved

during the 1990s. The reason is that it is easy to separate three scalar components of a

vector representation in Cartesian coordinates. However, there are also considerable problems

involving cylindrical geometrical configurations. Thus, the work related to the modeling in

cylindrical coordinate system is summarized in this section.

With Fourier transform, longitudinal components in a conductive shell of infinite length

and finite thickness with a straight current filament source was formulated by Gong et al. [78].

The solution of an arbitrary current distribution placed outside an infinitely long non-magnetic

conductive cylinder was discussed by Grimberg et al. in 1997 [79] and the method was extended

to a multi-layer conductive cylinder in 1999 [80].

Second-order magnetic vector potential was used to represent eddy-current distribution

inside a long conducting cylinder excited by a saddle shaped coil by Theodoulidis et al. [81].

Using the similar method, a model of Wobbin coil inside a conductive tube was established in

2002 [82]. Eddy-current induction by an horizontal coil inside a long cylindrical bolthole was

examined using the same idea by Burke and Theodoulidis [83]. Force and eddy current in a

solid conducting cylinder due to an eccentric circular current loop was considered by Sakaji

in 2000 [84]. Other examples, in which the SOVP is applied, include impedance calculation

of curved rectangular spiral coils wrapped around a long conductive cylinder [85], detection of

long cracks in steel using a spiral coil [86], a bobbin coil inside a conductive tube with eccentric

walls [87], and coil around conductive sphere [88] by Burke, Skarlatos, and Theodoulidis et al.

TREE method is quite useful for cylindrical problems, such as eddy currents in a cylindrical

conducting rod of finite length due to a coaxial encircling coil [89], the modeling of ferrite-cored

probes [25], finite length layered rob [90, 91], the end effect in tube testing with bobbin coils

[92], and coils inside a borehole [93]. The case of a coil at the opening of a borehole in a

conductor has also been solved using this method by Theodoulidis and Bowler in 2008 [94].

However, in that work, the location of the coil has to be constrained to the borehole region due

to the axial truncation and boundary conditions have to be matched at the surface of borehole.
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Field expressions also can be further simplified with different truncation boundary conditions.

Volume integral method is also widely used in cylindrical problems. Grimberg et al. modeled

the inner-eddy-current transducer with rotating magnetic field using volume integral method

[95, 96]. Skarlatos et al. proposed a volume integral equation formulation for the modeling of

ferromagnetic tubes [97].

In practice, not all the computer codes work well for the impedance calculation due to

cracks in cylindrical objects because of convergence and accuracy issues. Most of them are

slow and not efficient when they encounter the cylindrical problems. It is necessary to derive

the formulation and design the code exclusively for cylindrical structures. Three dimensional

bounded flaw in a metal tube was discussed by Monebhurrun et al. using a typical scattering

formulation [98]. Thin-skin model was introduced to solve cracks in borehole by Burke [99].

For tubes with large radius, Chen et al. used the crack model with a finite-thickness plate to

approximate cracks in steam generator tube [100]. The traditional approach dealing with the

electric field scattering from layered cylinders is a possible way to solve above issues [101], but

it does not take any advantage of eddy-current problems. Therefore, a systematic work which

can efficiently tackle cylindrical problems is needed.
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CHAPTER 4. COIL IMPEDANCE CHANGE DUE TO CRACKS IN A

BOREHOLE

As mentioned in Chapter 2, cracks in cylindrical holes are the fundamental and important

EC NDE problems. This chapter develops the theoretical and computational model of eddy-

current coil signals due to a surface crack near a circular cylindrical hole. The surface crack

is represented by an electric current dipole layer and an electric field integral formulation

with a dyadic Green’s kernel for the electric field in this cylindrical structure is developed.

Numerical implementation is also discussed. Three specific examples are considered to validate

our theoretical model. Comparison between prediction and experimental measurement shows

a close agreement. This work has been published on IEEE Transactions on Magnetics in 2012

[102].

In order to apply TREE method to this problem, the infinitely long borehole is truncated in

the axial direction and all the analytical solutions, including Green’s function and the incident

field, are expressed in terms of series. However, the integral-form solution for this special

geometry is also viable due to the single circularly cylindrical boundary. The reason why

we truncate the domain is to make the solution consistent with later chapters in which the

truncation is necessary for the more complicated geometrical structure.

4.1 Introduction

We consider a surface crack in a cylindrical hole, as shown in Fig. 4.1. Assume the conductor

has linear and homogeneous material properties apart from the flaw region, Ω. The permeability

of the conductor is µ = µ0µr, where µ0 is the permeability of free space. At the crack, the

conductivity σ(r) differs from that of the host conductivity σ0. The radius of the borehole is
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Figure 4.1: A rotary coil inside a boerhole in the presence of a longitudinal crack. The axis of

the coil is perpendicular to the axis of the borehole.

b. The coil carries a current varying as the real part of Ie−ıωt.

The electric and magnetic fields inside the conductor and the flaw region satisfy Faraday’s

law (2.6) and Ampère’s law (2.7), which are rewritten as

∇×E(r) = ıωµH(r), (4.1)

∇×H(r) = σ(r)E(r), (4.2)

where the relationship J = σE has been substituted into the (2.7). Here, σ(r) is σ0 for (r) at the

conductive region and it becomes zero for (r) at the crack region. The incident fields, i.e. the

fields in the absence of cracks also satisfy the similar equations with homogeneous conductivity

σ0, including the crack region,

∇×E(0)(r) = ıωµH(0)(r), (4.3)

∇×H(0)(r) = σ0E
(0)(r). (4.4)

We will discuss these two problems separately. Let’s consider the crack problem first.
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4.2 Formulation

In the presence of an incident field, the field change comes from the inhomogeneity of the

conductivity at the crack region. We define the induced electric dipole as

P(r) = [σ(r)− σ0]E(r). (4.5)

This induced electric dipole is only non-zero at the crack region. With this definition, the

Ampère’s law becomes

∇×H(r) = σ0E(r) + P(r). (4.6)

Taking the curl of both sides of (4.6) and substituting (4.1) into the right side, we have that

∇×∇×H− k2H = ∇×P, (4.7)

where k is wave number and k2 = ıωµσ0. Taking the curl of both sides of (4.1) and combining

it with (4.6), we find the electric field satisfies

∇×∇×E− k2E = ıωµP. (4.8)

Considering (4.7) and (4.8) together, the induced electric dipole is actually equivalent to a local

source which causes a field change from the incident field. Thus, the problem of finding the

fields due to a crack is the same as the one of finding the electric current dipole density, P.

4.2.1 Scalar Decomposition

The benefits of using scalar potentials has been discussed in Section 2.2.4. Here, because

the magnetic field is divergence free, we can express it in terms of TE and TM potentials

H = ∇×∇× (ẑWa) + k2∇× (ẑWb), (4.9)

over the whole solution domain and ẑ is the unit vector in the axial direction. From (4.7), we

can write that

(∇2 + k2)H = −∇×P. (4.10)

By substituting (4.9) into (4.7), we get

(∇2 + k2)
[
∇×∇× (ẑWa) + k2∇× (ẑWb)

]
= −∇×P. (4.11)
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Taking the dot product of the left-hand side of (4.11) with ẑ, we have that

ẑ · (∇2 + k2)
[
∇×∇× (ẑWa) + k2∇× (ẑWb)

]
=
(
∇2 + k2

)
ẑ ·
[
∇×∇× (ẑWa) + k2∇× (ẑWb)

]
=
(
∇2 + k2

)
ẑ · ∇ ×∇× (ẑWa)

= −
(
∇2 + k2

)
∇2
tWa (4.12)

where ∇t ≡ ∇− ẑ∂/∂z and the transverse Laplace operator is defined as ∇2
t = ∇2−∂2/∂z2. On

the other hand, by forming the cross product with ẑ and then taking the transverse divergence,

∇t · ẑ× of the left-hand side of (4.11), we find that the TM potential, Wb satisfies

∇t · ẑ ×
(
∇2 + k2

) [
∇×∇× (ẑWa) + k2∇× (ẑWb)

]
=
(
∇2 + k2

)
∇t · ẑ ×

[(
−ẑ∇2

t +
∂

∂z
∇t
)
Wa + k2∇× (ẑWb)

]
=
(
∇2 + k2

)
∇t ·

[
− ∂

∂z
(ẑ ×∇tWa) + k2∇tWb

]
= k2

(
∇2 + k2

)
∇2
tWb, (4.13)

with ∇t · (ẑ ×Q) = −ẑ · (∇×Q), we can write that

(
∇2 + k2

)
∇2
t

 Wa

Wb

 =

 ẑ · ∇ ×P

ẑ · ∇ ×∇×P/k2

 , (4.14)

Some operator identities used in above derivations are given in Appendix A. The transverse

Laplace operator, ∇2
t in (4.14) makes this equation different from a general Helmholtz equation.

This is an important fact for the scalar potentials in EC problems.

4.2.2 Dyadic Green’s Function

TE and TM modes are coupled with each other in this problem due to the continuity of

the tangential fields at the cylindrical boundary. The flaw field can be found by constructing

a dyadic kernel from scalar Green’s functions and using the kernel in an electric field integral

equation to determine the dipole source. We start by defining the scalar Green’s function as

(
∇2 + k2

) Gaa Gab

Gba Gbb

 = −

 1 0

0 1

 δ(r− r′). (4.15)
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The subscripts, a and b denote the modal character of the field and the source respectively.

For example, Gab represents the TE field migrating from the borehole interface originating at

a TM source. Thus, the mode coupling is taken into account by including the terms Gab and

Gba in this matrix form. In addition, a set of functions Uij(r|r′) is defined as

Gij(r|r′) = −∇2
tUij(r|r′) i, j = a, b (4.16)

where (r|r′) is Dirac delta function. Therefore, Uij(r|r′) can be identified as the TE/TM

potential due to a TE/TM point source.

In a conductor without any boundaries, there is no coupling between these two modes and a

formal solution of (4.15) could be obtained using the fundamental solution of a scalar Helmholtz

equation. We can write the solution as

G0(r|r′) =
eık|r−r

′|

4π|r− r′|
, (4.17)

where G0(r|r′) is the Green’s function in an unbounded space. A related function U0(r|r′) is

defined such that

G0(r|r′) = −∇2
tU0(r|r′). (4.18)

With the borehole boundary, additional fields due to the reflection has to be considered. Thus,

we can write a set of dedicated Green’s functions in (4.15) for the borehole problem as the sum

of a singular part and a regular part as follows

Gij(r|r′) = δijG0(r|r′) +G
(Γ)
ij (r|r′) i, j = a, b (4.19)

where δij denote the Kronecker delta function with δaa = δbb = 1 and zero otherwise. The

reflection parts from the borehole interface are considered in terms G
(Γ)
ij .

From (4.14), (4.16), (4.18), and (4.19), TE and TM potentials over the crack region are

given by  Wa

Wb

 =

∫
Ω

 U0 + Uaa Uab

Uba U0 + Ubb


 ẑ · ∇′ ×P

ẑ · ∇′ ×∇′ ×P/k2

 dr′, (4.20)
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where the integrations are defined over the crack region Ω. Integrating (4.20) by parts gives

Wa(r) =

∫
Ω

{
∇′ × [ẑ(U0 + Uaa)] +

1

k2
∇′ ×∇′ × [ẑUab]

}
·P dr′, (4.21)

Wb(r) =

∫
Ω

{
∇′ × [ẑUba] +

1

k2
∇′ ×∇′ × [ẑ(U0 + Ubb)]

}
·P dr′. (4.22)

With specific functions Uij i, j = a, b, the potentials can be calculated for a given electric

current dipole density and these expressions can be used to construct a dyadic kernel for an

electric field integral equation as follows.

4.2.3 Electric Field Integral Equation

An air-filled crack in a conductor forms a barrier to the eddy current, as stated in (2.17).

This boundary condition is applied to the electric field to form an integral equation. Therefore,

an expression for the electric field is needed for the calculation. The relationship between

electric field and the dipole source is given in (4.8), and we can regard ıωµP as the source

term. In order to derive the integral equation from (4.8), a formal solution of the electric field

can be written as

E(r) = E(0)(r) + iωµ

∫
Ω
G(r|r′) ·P(r′) dr′, (4.23)

where E(0) is the incident electric field in the absence of the crack and it could be solved from

(4.3) and (4.4). The dyadic Green’s function, G(r|r′), satisfies

∇×∇× G(r|r′)− k2G(r|r′) = Iδ(r− r′), (4.24)

with the borehole geometry.

In general, the dyadic Green’s function can be expressed as the sum of a singular unbounded

domain term in the absence of any boundaries, plus a regular term that accounts for the

interaction of the primary field with conductor boundaries [103]. Here, as with the scalar

Green’s functions in (4.19), the dyadic kernel for an infinite borehole is written as the sum of

the unbounded domain kernel and a reflection term representing the field migration from the

borehole surface

G(r|r′) = G(0)(r|r′) + G(Γ)(r|r′), (4.25)
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where the dyadic Green’s kernel in an unbounded domain is

G(0)(r|r′) =

(
I +

1

k2
∇∇

)
G0(r|r′), (4.26)

with G0(r|r′) given by (4.17) [103].

Dyadic identities provided in Appendix A can be used to derive the dyadic Green’s function

via the scalar decomposition of the fields. Substituting (4.22) into (4.2) and (4.9), one can

identify the two terms in (4.25) as follows

G(0)(r|r′) = −
(
I +

1

k2
∇∇

)
∇2
tU0(r|r′), (4.27)

and

G(Γ)(r|r′) = (∇× ẑ)(∇′ × ẑ)Uaa(r|r′) +
1

k2
(∇× ẑ)(∇′ ×∇′ × ẑ)Uab(r|r′)

+ (∇×∇× ẑ)(∇′ × ẑ)Uba(r|r′) +
1

k2
(∇×∇× ẑ)(∇′ ×∇′ × ẑ)Ubb(r|r′).(4.28)

A general discussion is also given in [104].

Once the electric field is obtained from (4.23), the eddy current inside the conductor can

be found as J = σ0E. For an air-filled crack in the conductor, the eddy current can not flow

across the interface. We can applied this boundary condition at the crack interface and the

final electric field integral equation is given by

J (0)
n (r) + k2

∫
Ω
n̂ · G(r|r′) ·P dr′ = 0, (4.29)

where r is on the surface of the crack and n̂ is an unit vector normal to the crack surface.

As mentioned before, the coil signal due to the crack is measured in practical applications.

By applying reciprocity theorem to the scattered field at the primary source and the incident

field at the equivalent source (the induced current dipole density at the flaw) [41], the coil

impedance change due to a crack is given by

∆Zc = − 1

I2

∫
Ω

E(0)(r) ·P(r) dr. (4.30)

Once the incident field and the dipole density are calculated, we could get the coil impedance

change using (4.30).
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4.3 Incident Field Distribution

As discussed in the last section, the incident field is required in (4.29) and (4.30) to get the

coil impedance change due to cracks. The calculation of the incident coil field in the presence of

a borehole, E(0)(r), has been presented in an integral form by Burke and Theodoulidis [83] and

a series form by Theodoulidis and Bowler [93]. The derivations are also given in Appendix D

for supplementation. In our program, a bobbin coil and a rotary coil are considered. Rotary

coils have larger response for a longitudinal crack and are more useful in EC NDE applications.

Thus, we will focus on the rotary coils in the following discussion.

A contour plot of the incident field at the plane φ = 0◦ is shown in Fig. 4.2. The parameters

of the coil size are listed in Table 4.1. In this figure, the coil excitation frequency is 1 kHz and

the center of the rotary coil is at z = 0 and the borehole interface is located at ρ = 12.5 mm.

Table 4.1: Parameters of test experiment for a rotary coil inside borehole. The configuration

is shown in Fig. 4.3.

Coil

Inner radius (r1) 1.53 mm

Outer radius (r2) 3.92 mm

Length (`) 1.04 mm

Number of turns (N) 305

Lift-off (b− x2) 0.73 mm

Test Specimen

Borehole radius (b) 12.5 mm

Conductivity (σ) 23.05 MS/m

Relative permeability (µr) 1

Transverse Notch

Circumferential notch 5.0 mm rad.

Width (w) 0.130 mm

Longitudinal Notch

Semi-elliptical axial notch 5.0× 15.0 mm2

Width (w) 0.130 mm

Other Parameters

Frequency (f) 40 kHz

Skin depth at 40 kHz (δ) 0.524 mm

Isolated coil inductance (L) 462.0µH
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Figure 4.2: Incident field at the plane φ = 0◦ due to a rotary coil inside a boerhole in the

absence of cracks, the parameters are listed in Table 4.1. The operating frequency is 1 kHz.

4.4 Scalar Green’s Function

To complete the solution and find the electric current dipole density, the scalar Green’s

function Gij(r|r′) defined in (4.15) and its related functions U(r|r′) defined in (4.16) are sought

for a cylindrical borehole with corresponding boundary conditions in this section. For the scalar

functions expressed in cylindrical polar coordinates, Fourier series representation is used in the

azimuthal direction due to the periodicity of 2π. TREE method is used here to derive the

scalar Green’s function. The whole domain is truncated in the axial direction at the surface

z = 0 and z = h, where h is the truncation length. We impose the truncation boundary
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condition that the tangential electric field is zero (PEC boundary condition) at z = 0 and

the tangential magnetic field is zero (PMC boundary condition) at z = h. These truncation

boundary conditions, which are used through this dissertation, are summarized in Table 4.2.

The axial direction, ẑ is chosen as the normal direction.

Assume a point source located at P in the conductor, Fig. 4.3. For the region ρ < ρ′, the

magnetic field has a scalar representation like

H = ∇×∇× (ẑWa) + k2∇× (ẑWb), (4.31)

and, in this region, the electric field can be expressed as

E = ıωµ[∇× (ẑWa) +∇×∇× (ẑWb)]. (4.32)

Both the scalar potentials satisfy Helmholtz equation

(∇2 + k2)W = 0, (4.33)

in the conductive region forb < ρ < ρ′ and Laplace equation

∇2W = 0, (4.34)

in the borehole for ρ < b. Analytical solution can be found in each region by using the method

of separation of variables.

With the axial truncation, the function can be extended into a periodic function and the

Fourier series expansion respect to the axial direction ẑ, is performed. The PEC truncation

boundary condition means the TE potential is zero at z = 0, while the PMC truncation

condition means the derivative of the TE potential respective to z is zero at z = h. With this

property, the truncation boundary conditions we imposed are actually equivalent to that we

Table 4.2: Summary of the truncated boundary conditions at z = 0 and z = h.

Truncation Plane Field Condition Boundary Condition

z = 0 ẑ ×E = 0 Wa = 0, ∂Wb
∂z = 0

z = h ẑ ×H = 0 ∂Wa
∂z = 0,Wb = 0
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Figure 4.3: A point source in a truncated borehole region. The whole domain is truncated in

the axial direction at the surface z = 0 with PEC truncation boundary condition and at z = h

with PMC truncation boundary condition.

extend the function within the region 0 ≤ z ≤ h into a smooth periodic function and apply the

Fourier series expansion to this periodic function. Therefore, the sine functions with certain

periods form a complete set to express the TE potential in the axial direction. The first three

sine functions in this set and their expansions are plotted in Fig. 4.4. It is easy to see the

period of these functions should be π/2h, 3π/2h, 5π/2h, and so on.

With Fourier series expansion in the azimuthal and axial directions, all the scalar Green’s

functions corresponding to the TE potential can be written as

Ga(r|r′) =
1

πh

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

G̃0(ρ, ρ′,m, κi) sin(κiz) sin(κiz
′), (4.35)

where eigenvalues κi = (2i − 1)π/2h (i = 1, 2, 3, . . .) to match the truncation conditions. The

Green’s function for the TM potential has the similar form except a cosine function is used to

satisfy truncation conditions in the axial direction

Gb(r|r′) =
1

πh

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

G̃0(ρ, ρ′,m, κi) cos(κiz) cos(κiz
′). (4.36)
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Figure 4.4: The meaning of truncation boundary conditions. Here, the PEC and PMC

truncation boundary conditions are applied at z = 0 and z = 1, respectively. Eigenvalues

κi = (2i− 1)π/2 where i = 1, 2, 3, . . ..

For simplicity, we drop this double summation form for the time being and use the Fourier

series expansion form G̃ in the following discussion.

4.4.1 Scalar Green’s Function for a Point Source in a Borehole

Let’s first consider a singular source point in a homogeneous conductive domain, Fig. 4.5.

There is no coupling between TE and TM potentials in this case and the dyadic Green’s function

is reduced to two separate scalar Green’s functions. Substituting (4.35) into (4.15), the Fourier

transform of the unbounded Green’s function G̃0(ρ, ρ′,m, κi) satisfies

1

ρ

∂

∂ρ

(
ρ
∂G̃0

∂ρ

)
−
(
γ2
i +

m2

ρ2

)
G̃0 = −1

ρ
δ(ρ− ρ′), (4.37)

where γ2
i = κ2

i − k2 and the solution is given by

G̃0(ρ, ρ′,m, κi) = Im(γiρ<)Km(γiρ>), (4.38)
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Figure 4.5: A point source in a truncated homogeneous conductive region, 0 ≤ z ≤ h. The

truncation boundary conditions are the same as before.

with ρ< = min(ρ, ρ′) and ρ> = max(ρ, ρ′) [105]. Im(z) is the modified Bessel function of

the first kind and Km(z) is the modified Bessel function of the second kind. The index m

is corresponding to the order of the modified Bessel function or the period in the azimuthal

direction and the index i is related to the modes in the axial direction. For simplicity, let’s also

drop the subscript i from κi and γi for now.

As mentioned in (4.19), the Fourier domain kernels for a point source in the conductive

region surrounding a circular hole takes the form

G̃ij(ρ, ρ
′,m, κ) = δijG̃0(ρ, ρ′,m, κ) + G̃

(Γ)
ij (ρ, ρ′,m, κ). (4.39)

The field migrating outwardly from the surface of the borehole is represented by

G̃
(Γ)
ij (ρ, ρ′,m, κ) = Γij(m, γ)Km(γρ)Km(γρ′), i, j = a, b (4.40)

where Γij(m, γ) are the reflection coefficients characterizing the boundary conditions on the

circularly cylindrical surface and they can be found using the following standard method by

matching the boundary conditions at the cylindrical surface.
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4.4.2 Transmission and Reflection Inside a Borehole

For the truncated borehole, the tangential fields on both sides of the borehole interface

have to be considered together to match the continuity of the tangential electric and magnetic

fields. In the following derivation, the superscript (0) is used to represent the incident field,

Fig. 4.3. The coefficients representing the fields inside borehole are denoted by the superscript

(1) and the quantities associated with the reflection from the borehole surface are denoted by

the superscript (2). According to (4.16), the functions Ũij(ρ, ρ
′,m, κ) in the conductive region

can be written as

Ũij(ρ, ρ
′,m, κ) = δijŨ

(0)
ij (ρ, ρ′,m, κ) + Ũ

(2)
ij (ρ, ρ′,m, κ), i, j = a, b (4.41)

where

Ũ (0)
aa = Ũ

(0)
bb = − 1

γ2
G̃0 = − 1

γ2
Im(γρ)Km(γρ′), (4.42)

and

Ũ
(2)
ij = − 1

γ2
G̃

(Γ)
ij = − 1

γ2
Γij(m, γ)Km(γρ)Km(γρ′). (4.43)

Inside the borehole, Ũij has the form

Ũ
(1)
ij (ρ, ρ′,m, κ) = Tij(m, γ)Im(κρ)Km(γρ′), (4.44)

where Tij(m, γ) is the transmission coefficients due to the interface. Let’s define the vector and

matrix form, such as

Ũ =

 Ũa

Ũb

 =

 Ũaa + Ũab

Ũba + Ũbb

 , (4.45)

and

Γm =

 Γaa Γab

Γba Γbb

 . (4.46)

Coefficients in (4.41) and (4.44) are then related as

Ũ(1) = TmŨ(0), (4.47)

and

Ũ(1) = ΓmŨ(0). (4.48)
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Similarly, the coupling between the TE and TM modes have been included as the off-diagonal

elements in the reflection matrix. The transmission and reflection coefficient matrices, Tm and

Γm, can be solved by applying the continuity of the tangential fields on ρ = b. The continuity

conditions of the axial and the azimuthal components of electric and magnetic fields are given

by

κ2Ũ(1)
∣∣∣
ρ=b−

= γ2IµŨ
(2)
∣∣∣
ρ=b+

(4.49)

 ım

b
∂z 0

∂ρ − ım
b
∂z

 Ũ(1)

∣∣∣∣∣
ρ=b−

= Iµ

 ım

b
∂z −k2∂ρ

∂ρ − ım
b
∂z

 Ũ(2)

∣∣∣∣∣
ρ=b+

(4.50)

where Iµ =

 1 0

0 µr

 and the equations are derived from the continuity of the tangential

fields in terms of TE and TM potentials. The tangential components are derived from (4.31)

and (4.32). From (4.49) and (4.50), it is clear that the TE and TM modes are coupled at the

borehole interface for nonzero order mode (m 6= 0). The following notations are used in the

our solution

Λm(x) =
xI ′m(x)

Im(x)
, Mm(x) =

xK ′m(x)

Km(x)
, (4.51)

and we have that

Λm(x)−Mm(x) =
1

Im(x)Km(x)
. (4.52)

Solving equations (4.49) and (4.50), we find

Γaa(m, γ) = − Im(γb)

Km(γb)
∆−1
m

{
µrk

2m2 −Mm(γb)[µrκ
2Λm(γb)− γ2Λm(κb)]

}
,

Γbb(m, γ) = − Im(γb)

Km(γb)
∆−1
m

{
µrk

2m2 − Λm(γb)[µrκ
2Mm(γb)− γ2Λm(κb)]

}
,

Γab(m, γ) = − ıµrκmk
2

[Km(γb)]2
∆−1
m , Γba(m, γ) = −Γab(m, γ)/k2, (4.53)

where

∆m = µrk
2m2 −Mm(γb)[µrκ

2Mm(γb)− γ2Λm(κb)]. (4.54)

By substituting the reflection coefficients in (4.53) back to (4.40), we complete the derivation

of the scalar Green’s function and the dyadic kernel in (4.23).
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4.5 Flaw Theory and Crack Model

Narrow surface crack is a typical simulation model used in EC NDE problems. For a narrow

crack, the component of the dipole density normal to the crack surface is dominant. Thus, it

is reasonable and efficient to only compute this component. In this section, transverse and

longitudinal cracks are introduced as two examples to validate the formulation derived before.

4.5.1 Narrow Crack and Ideal Crack

For a general flaw, the electric field integral equation (4.29) can be solved numerically using

volume element method. However, for a parallel sided narrow crack, the component normal

to the crack surface dominates and the transverse components can be neglected. Thus, the

electric current dipole density can be written as

P(r) ∼= n̂P (r), (4.55)

where n̂ is normal to the crack surface. Then the integral equation (4.29) is reduced to

J (0)
n (r) + k2

∫
Ω
Gnn(r|r′)P (r) dr′ = 0, (4.56)

for the points on the outside surface of a crack that is impenetrable and the kernel is one

component of the dyadic Green’s function

Gnn(r|r′) = n̂ · G(r|r′) · n̂. (4.57)

Now the problem simply becomes the calculation of a dipole density over a crack surface using

volume element method. We only need to define the problem domain over the crack region,

which means a significant reduction of the computational cost. The same thing happens for an

ideal crack which is a surface crack with infinitesimal thickness and a surface dipole density is

defined as

P(r) = n̂δnP (r). (4.58)

Here, we examine both transverse and longitudinal cracks in a borehole and refer to both

ideal and open cracks in the our discussion. The transverse crack is a crack which surface

is perpendicular to the axial direction, because the axial direction has been chosen as the
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longitudinal direction in above derivation. The longitudinal crack, as shown in Fig. 4.1, means

the crack which surface is parallel to the radial and axial directions.

4.5.2 Transverse and Longitudinal Cracks

For a transverse crack, the crack surface is normal to the axial direction with n̂ = ẑ and the

component of the tensor kernel required for the calculation is Gzz(r|r′). Also, only the axial

component of the incident field is needed. As the expression of the dyadic Green’s function in

(4.25), this kernel can be divided into two parts, unbounded domain part from (4.27),

G(0)
zz (r|r′) =

(
1 +

1

k2

∂2

∂z2

)
G0(r|r′), (4.59)

and the reflection part from (4.28)

G(Γ)
zz (r|r′) = − 1

k2
∇′2tG

(Γ)
bb (r|r′) =

1

k2
∇2
t∇′

2
tU

(Γ)
bb (r|r′). (4.60)

For a longitudinal crack, the crack surface is normal to the azimuthal direction with n̂ = φ̂.

The component of tensor kernel required for the calculation, Gφφ(r|r′), can be written as

G
(0)
φφ(r|r′) =

(
1 +

1

k2ρ2

∂2

∂φ2

)
, (4.61)

for the unbounded domain part and

G
(Γ)
φφ (r|r′) =

∂2Uaa
∂ρ∂ρ′

− 1

k2ρ′
∂3Uab

∂ρ∂φ′∂z′
− 1

ρ

∂3Uba
∂φ∂z∂ρ′

+
1

k2ρρ′
∂4Ubb

∂φ∂z∂φ′∂z′
, (4.62)

for the reflection part. We only have to consider the azimuthal component of the incident field

J
(0)
φ (r) in (4.56).

With appropriate discretization procedure, the dipole density over a crack region can be

expressed in terms of linear combination of the given basis function and the volume element

method can be applied to a specific problem. Final results of the coil impedance change can

be obtained numerically.

4.6 Volume Element Method and Numerical Algorithm

Consider the crack problem described above with the integral equation (4.56). The crack

region is divided into cubic volume elements. Pulse basis function in cylindrical polar coordi-
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nates is used to describe the dipole density over each cell [106]. An approximated solution for

P (r) can be written as

P (r) ≈
L∑
l=1

plfl(r), (4.63)

where pulse function fl(r) is defined as

fl(r) =

 1 if r ∈ cell l

0 otherwise
(4.64)

Substituting (4.63) into (4.56), we have that

k2
L∑
l=1

pl

∫
Ωl

Gnn(r|r′) dr′ = −J (0)
n (r). (4.65)

With point-matching (collocation) method on the crack surface, a system of matrix equations

with L unknown coefficients pl is obtained as

[M][p] = −[J], (4.66)

where [p] and [J] are column vectors and the element in matrix [M] is

Mjl = k2

∫
Ωl

Gnn(rj |r′) dr′. (4.67)

Once the matrix equations, (4.66) are constructed, the dipole density can be solved by using

standard matrix solver. To simplify the thin-crack problem, only one element is used in the

normal direction n̂ and (4.67) is calculated over all the volume elements. Notice that the testing

point rj is located on the outside surface of each cell, not at center. For an ideal crack, the

volume integral is reduced to the surface integral and the testing point is at the center of the

cell.

Finally, the impedance change of a coil due to a crack in (4.30) is approximated as

∆Zc = − 1

σ0I2
[J]T · [P], (4.68)

where superscript T means the transpose of J. The calculation of the matrix elements, Mjl for

the transverse and longitudinal cracks are described as follows. As derived in Section 4.5.2, the

Green’s function includes two parts, singular term and reflection term. The matrix elements

are evaluated through the integrals for these two parts separately.
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4.6.1 Singular Matrix Elements

The matrix element due to a singular source in unbounded domain is calculated first. Special

attention has to be paid on the diagonal element computation in which the integral over the

singular point is evaluated because of the hyper singularity. Integrals over the singular term

can be written as

M
(0)
jl =

∫
Ωl

(
k2 +

∂2

∂n′2

)
G0(rj |r′) dr′, (4.69)

where n′ represents the coordinate normal to the crack surface. Because G0(r|r′) is the solution

of the scalar Helmholtz equation, we can transform the singular integrand by using(
k2 +

∂2

∂n′2

)
G0(rj |r′) = −∇′2τG0(rj |r′). (4.70)

Here the subscript τ denotes the components of the differential operator tangential to a surface

of constant n. For a transverse crack, for example, this surface is a plane in which z is a

constant whereas for an axial crack, the crack face is in a plane of constant φ. Using the

identity ∇′2τ = ∇′τ · ∇′τ to transform the Laplacian operator and applying Gauss divergence

theorem, we can express the singular element as a path integral

M
(0)
jl = −

∮
Cl

τ̂ · ∇′τG0(rj |r′) d`′, (4.71)

where Cl is the path bordering the surface of the cell l. The details about the numerical

evaluation of the integral over the singular term are discussed in Section 4.6.1. Next, we

present the integral over the reflection part.

4.6.2 Reflection Matrix Elements

The reflection matrix element is calculated from the integral of the Green’s kernel in Sec-

tion 4.5.2 over the cells. The reflection matrix elements for the transverse and longitudinal

cracks are presented as follows.

4.6.2.1 Reflection matrix elements for transverse cracks

A single element of a transverse crack in cylindrical polar coordinates is shown in Fig. 4.6

(a). The cell is expanded from ρ1 to ρ2 in the radial direction, from φc + ∆φ/2 to φc −∆φ/2
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Figure 4.6: Volume elements for modeling (a) a transverse open crack and (b) a longitudinal

one.

in the azimuthal direction, and from zc −∆z/2 to zc + ∆z/2 in the axial direction with small

∆z. For a transverse crack, Fourier transform of the reflection part in the Green’s function is

given by (4.60) and (4.40)

G̃(Γ)
zz (ρ, ρ′,m, κi) = −γ

2
i

k2
Γbb(m, γi)Km(γiρ)Km(γiρ

′). (4.72)

From (4.67) and (4.35), the integral over a transverse element can be written as

M(Γ) = k2

∫ zc+∆z/2

zc−∆z/2

∫ φc+∆φ/2

φc−∆φ/2

∫ ρ2

ρ1

ρ′G(Γ)
zz dρ′ dφ′ dz′

= − 4

πh

∞∑
m=0

εm
m

cos[m(φ− φc)] sin
m∆φ

2

×
∞∑
i=1

1

κi
Γbb(m, γi)g1,m(γiρ1, γiρ2)Km(γiρ) cos(κiz) cos(κizc) sin

κi∆z

2
, (4.73)

where ε0 = 1 and εm = 2 for m = 1, 2, · · · and the function gµ,m is defined as

gµ,m =

∫ z

0
ρµKm(ρ) dρ. (4.74)

For conciseness we write gµ,m(ρ1, ρ2) = gµ,m(ρ2) − gµ,m(ρ1). The detailed evaluation is given

in Section 4.7.

In the case of an ideal transverse crack, a similar expression can be derived except the

difference on the integral over variable z.
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4.6.2.2 Reflection matrix elements for longitudinal cracks

For a longitudinal crack, Fourier transform of the reflection part in the Green’s function is

given by (4.40) and (4.62) as

G̃
(Γ)
φφ (ρ, ρ′,m, κi)

= −Γaa(m, γi)K
′
m(γiρ)K ′m(γiρ

′)− 1

k2

m2κ2
i

ρρ′γ2
i

Γbb(m, γi)Km(γiρ)Km(γiρ
′)

− ımκi
γi

Γba(m, γi)

[
1

ρ
Km(γiρ)K ′m(γiρ

′) +
1

ρ′
K ′m(γiρ)Km(γiρ

′)

]
. (4.75)

For an open crack, the integration over the crack opening with small ρ∆φ can be written as

M(Γ) = k2

∫ zc+∆z/2

zc−∆z/2

∫ φc+∆φ/2

φc−∆φ/2

∫ ρ2

ρ1

ρ′G
(Γ)
φφ dρ′ dφ′ dz′

= − 4

πh

∞∑
m=0

εm
m

cos[m(φ− φc)] sin
m∆φ

2

×
∞∑
i=1

sin(κiz) sin(κizc) sin
κi∆z

2

∫ ρ2

ρ1

ρ′G̃
(Γ)
φφ dρ′, (4.76)

where the integral over ρ has the form∫ ρ2

ρ1

ρ′G̃
(Γ)
φφ dρ′

=
k2

γ2
i

Γaa(m, γi)K
′
m(γiρ)hm(γiρ1, γiρ2) +

m2κ2
i

ργ3
i

Γbb(m, γi)Km(γiρ)g0,m(γiρ1, γiρ2)

+
ımκik

2

γ2
i

Γba(m, γi)

[
1

ργi
Km(γiρ)hm(γρ1, γρ2) +K ′m(γiρ)g0,m(γiρ1, γiρ1)

]
. (4.77)

For an ideal crack, the reflection matrix element is slightly different because the integration

over radial direction becomes dρ′ instead of ρ′ dρ′.

This completes the matrix element calculation in the volume element method for transverse

and longitudinal cracks near a borehole.

4.7 Numerical Implementation

In this section, we discuss the program implementation based on the formulation derived

before. Even though the idea and formulation are pretty clear, there are still some other issues

that have to be considered in the program implementation and numerical calculations. From
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(4.73) and (4.76), each matrix element involves a double summation over infinite number of

orders and modes. In numerical calculations, the summation has to be truncated to a certain

number. In order to get correct numerical results, we have to make sure this double summation

is convergent and the truncation of the series will not effect the accuracy of the final results

in the calculation. It turns out that careless implementation could affect the execution of the

program a lot. Either we can not get convergent results, or it might take long time to solve

the whole problem. We limit our discussion based on the implementation from MATLAB1.

The ideas could be extended to other computer languages.Three important factors on the code

implementation are discussed as follows.

4.7.1 Integral of Unbounded Domain Kernel

For the singular matrix element calculation in (4.69), the double integral in (4.71) could be

realized using ’quad2d’ function. For the off-diagonal elements, a single-point evaluation of the

integral is accurate enough if the observation point rj is a few skin depth away from the source

cell Ωl. For the observation points near a given source cell, the log-like Gaussian quadrature

[107] and the ’quad2d’ function are used together to ensure the accuracy and the speed of the

triple integral over a source cell.

4.7.2 Calculation under Limited Bit Length

There is a double summation involved in the reflection matrix element calculation. We

have to make sure those matrix elements completely convergent so that the final results are

correct. In other words, we need to keep enough orders and modes to get an accurate matrix

element in (4.73) and (4.76), especially for the diagonal elements. The theory requires a large

amount of calculation over modified Bessel functions and their integrals, which are included in

the reflection coefficient calculation and the matrix element evaluation.

For numerical calculation, all the algorithms have to be executed within the limited com-

putation range. In MATLAB, the data is stored in a double precision floating-point format.

Typically the numerical range is from 10−308 to 10308. Take the computation of the modified

1MALTAB is a registered trademark of The MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760, USA.
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Bessel function Im(γib) as an example. For given order m and large radius b, the function

Im(γib) will increase exponentially when we increase the magnitude of γi and it is easy to reach

the limit 10308. Similarly, for a large parameter γi, only a quite small range of b can be covered

if the calculation is implemented under the limited bit length. It implies the convergence over

the higher modes γi might not be accessible and the final results might be completely wrong.

This is true for a borehole with a large radius.

In order to avoid this issue, we need a better numerical implementation in which the modified

Bessel functions can be obtained for a large argument and a large order simultaneously. The

fact is that the final result of the matrix element is always a reasonable number, neither too

small nor too big. By observing (4.73) and (4.76), we propose a new implementation in which

two functions with different trends are combined together so that the calculation will always be

within a reasonable numerical range. Instead of calculating those Bessel functions separately,

the combined functions are always treated together. This is not only efficient but also important

because an appropriate arrangement brings extra benefits in the calculation. Take the reflection

kernel of a transverse crack (4.73) as an example. The following two functions are implemented

in the code

Im(γib)Km(γiρ) and g1,m(γiρ1, γiρ2)/Km(γib), (4.78)

where the ratio, Im(γib)/Km(γib) has been separated from the reflection coefficient Γbb(m, γi)

so that the rest part of Γbb(m, γi) also has a small variation. It should be stressed that we

evaluate the combination of the two functions together, not the functions individually at any

time. Now the problem becomes how to evaluate those combined functions for a large range

of orders and modes.The difficulty is that there is no such internal functions to calculate the

desired combination of those modified Bessel functions, let alone integral of the modified Bessel

functions. The recurrence relations [108]

Im+1(z) = −2m

z
Im(z) + Im−1(z), (4.79)

Km+1(z) =
2m

z
Km(z) +Km−1(z), (4.80)

provide us a good clue for the high-order calculation, but it can not be directly used here. The

different arguments, b and ρ in (4.78), make the problem even serious. In order to solve those
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problems, a new recurrence algorithm is introduced.

4.7.3 Recurrence Algorithm

The recurrence algorithm should to be able to deal with extreme cases, such as the problem

of a borehole with a large radius in which the series convergence quite slowly. In order to do

this efficiently, there are two fundamental functions have to be calculated first, which are

Im(z)

Im−1(z)
and

Km(z)

Km+1(z)
. (4.81)

Recurrence relations (4.83) and (4.80) can be rewritten as

Im+1(z)

Im(z)
= −2m

z
+
Im−1(z)

Im(z)
, (4.82)

Km+1(z)

Km(z)
=

2m

z
+
Km−1(z)

Km(z)
. (4.83)

Once the ratio of the modified Bessel functions of the first two orders (m = 0 and 1) are given,

the ratio of the high orders can be efficiently calculated from these recurrence relations. We

don’t need to calculate the modified Bessel functions of high orders separately. However, the

three-term linear recurrence relation (4.82) is unstable for the upward recurrence. In other

words, the roundoff error would increase as the higher-order terms are calculated and finally

swallow the whole significant digits. Therefore, the upward calculation is no practical use

for the calculation of the ratio Im+1(z)/Im(z). Pincherle’s theorem can be used to analysis

the stability of recurrence relation [109]. However, the recurrence relation (4.82) is stable for

the downward recurrence. Thus, we can start any seed values from the highest-order term

and generate low-order terms based on this recurrence. If there is a way to normalize all the

sequences to the correct values, then this algorithm becomes a practical method to evaluate

the ratio. This method is called Miller’s algorithm. The following normalization formula for

Im(z) is adopted in our code [108]

1 = I0(z)− 2I2(z) + 2I4(z)− 2I6(z) + · · · . (4.84)

Rearranging the terms, we have that

[1− I0(z)] /I1(z) = [−2I2(z) + 2I4(z)− 2I6(z) + · · · ] /I1(z), (4.85)
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where the right-hand side is computed with downward recurrence and finally the whole sequence

is normalized by the exact value [1− I0(z)] /I1(z). The procedure is similar to the calculation

of a single Bessel function [109]. With the Miller’s algorithm, the high-order terms could be

generated pretty fast without affecting the accuracy. By using the identities

I ′m(z)

Im(z)
=

1

2

Im−1(z) + Im+1(z)

Im(z)
=

1

2

(
1

/
Im(z)

Im−1(z)
+
Im+1(z)

Im(z)

)
, (4.86)

K ′m(z)

Km(z)
= −1

2

Km−1(z) +Km+1(z)

Km(z)
= −1

2

(
Km−1(z)

Km(z)
+ 1

/
Km(z)

Km+1(z)

)
, (4.87)

the reflection coefficients can be evaluated directly based on above ratio functions.

Once the ratio of the modified Bessel functions for the same argument γib is formed, the

recurrence relations of combined functions can be easily derived from (4.82) and (4.83). Two

typical derivations are given here as examples. Let’s consider Im(z)Km(w) first. With recur-

rence relation (4.83), we can write that

Im+1(z)Km+1(w)

= Im+1(z)

[
2m

w
Km(w) +Km−1(w)

]
=

2m

w
Im(z)Km(w)

Im+1(z)

Im(z)
+ Im−1(z)Km−1(w)

Km+1(z)

Km−1(z)
, (4.88)

where

Km+1(z)

Km−1(z)
= 1

/[
Km−1(z)

Km(z)

Km(z)

Km+1(z)

]
. (4.89)

The function Im(z)Km(w) for the whole orders can be generated with this recurrence as long

as the function I0(z)K0(w) and I1(z)K1(w) are given.

A more difficult case is that combined functions involving the integral of the modified Bessel

function gµ,m. The integral itself has the recurrence relation

gµ,m+1(w) = −2mwµ

m− µ
Km(w) +

µ+m

µ−m
gµ,m−1(w). (4.90)

So the recurrence relation for the function gµ,m(z)/Km(w) can be written as

gµ,m+1(w)

Km+1(z)
= −2mwµ

m− µ
Km(w)

Km(z)

Km(z)

Km+1(z)
− µ+m

µ−m
gµ,m−1(w)

Km−1(z)

Km−1(z)

Km+1(z)
, (4.91)

where Km(w)/Km(z) requires one more recurrence relation which can be easily derived in the

same way.
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Now the only trouble left is to evaluate all the functions for the zeroth and first order. The

internal function is suitable for those functions with a small argument. For argument |z| � 1,

asymptotic forms of the modified Bessel functions are

Im(z) ≈ ez√
2πz

{
1− 4m2 − 1

8z
+

(4m2 − 1)(4m2 − 9)

2!(8z)2
− · · ·

}
, (4.92)

Km(z) ≈
√

π

2z
e−z

{
1 +

4m2 − 1

8z
+

(4m2 − 1)(4m2 − 9)

2!(8z)2
+ · · ·

}
. (4.93)

Applying these two asymptotic approximations to the combined functions with large arguments,

a good estimation can be made even with a few terms. For example, the approximation

Im(z)Km(w) ≈ ez−w

2
√
zw

(1− 4m2 − 1

8z
)(1 +

4m2 − 1

8w
), (4.94)

gives the first order approximation for m = 0, 1. Now, the reflection matrix element could be

evaluated with high speed and high accuracy using this approach. Another advantage of this

algorithm is that it is suitable to use better data structure in the program, which takes less

memory while we evaluate the matrix element.

4.8 Series Convergence Issues

In our approach, the calculation of the reflection matrix element takes the most time. Se-

ries convergence is an important issue which determines the total computational cost, including

CPU time and memory requirement. The singular term has a slow convergence and hypersingu-

lar term has a super slow convergence. For the reflection matrix element, a typical distribution

of the terms in the double summation is shown in Fig. 4.7. The color shows the order of mag-

nitude for each term. The slow convergence indicates that large orders and modes of the terms

are required. In general, it is possible to solve the convergence issue using some extrapolation

methods.

Mathematically, the summation of the first n-term series forms a sequence and it can be

accelerated using a sequence transformation. Most of the transformation methods are con-

structed by an extrapolation with linear or non-linear mapping. The original slowly convergent

sequence is transformed to a new one which is assumed to have a faster convergence. General

methods can be applied to any series, such as Euler transformation, Shanks’ transformation,
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Figure 4.7: The order of magnitude for the terms in the double summation involved in the

reflection matrix element calculation.

Wynn’s ε-algorithm, Chebyshev-Toeplitz Algorithm, and Θ-algorithm. The details concern-

ing the behavior of those transformation can be found in [110]. On the other hand, specific

methods are available for certain types of series and they usually work better than the general

methods. Examples of such methods are method of average, Poisson transformation, Ewald’s

transformation, method of exponentials, and Kummer’s transformation. Some of them have

been applied to many other electromagnetic problems, like scattering from dielectrics. The

basic principle and comparison of these specific methods are given by Kinayman and Aksun

[111]. Other methods, such as mid-point summation [112] and summation-by-parts [113], also

have a good performance on some electromagnetic problems. In our case, the technique has

to be able to deal with a double summation, or even a triple one later, for a large range of

argument where the coefficients might not have a closed-form. Unfortunately, most of above

methods only have a little action to our problems and some of them even do not work.

For the physical model, the singular source point and its image can be subtracted from

the matrix element and the remainder convergence pretty fast. This approach works well for

the coil above a half-space conductor. Nonetheless, it is not easy to find the image term for
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a point source around cylindrical structure. Asymptotic approximation might be used as an

approximation of the image term, but there is no well-developed approach to address the similar

problem as we know.

The generalized pencil of function (GPOF) method is a possible way to deal with this

issue [114]. Combining with the evaluation of sommerfeld type integrals and the concept of

discrete complex images, the GPOF method has been used to accelerate the computation of

the eddy-current inspection of narrow cracks in a half-space conductor [115, 116].

4.9 Results

In order to validate the physical modeling and numerical implementation, the predictions

of the coil impedance change are compared to experimental measurements. As a special case,

the coil impedance change due to a rectangular slot in a half-space conductor is examined first

by making the borehole radius large enough so that the borehole can be approximate as a

half space. Experiments of the transverse and longitudinal surface cracks around boreholes are

examined later.

4.9.1 Cracks in Half-Space Conductor

The world federation of NDE centers provides several benchmark problems including the

impedance change of a bobbin coil due to a slot inside a half-space conductor. As mentioned

before, the program and the theory are designed to relate to each other. Thus, this well-

known benchmark problem was used to verify our borehole solution first before any further

experimental work. This saved us lots of work. The bobbin coil above an aluminum alloy plate

with a rectangular slot is considered according to the team workshop problem 15 by Burke

[117]. The experimental arrangement and the problem are presented in Fig. 4.8 [117]. The coil

is scanned along the length of the slot. Both the frequency and the coil lift-off are fixed and coil

impedance change ∆Zc was measured as a function of coil center position. The parameters for

this test experiment are listed in Table 4.3. Here, this problem is approximated as a rotary coil

inside a borehole with a pretty large radius. As shown in Fig. 4.9, the predicted coil impedance

change due to the same size crack is calculated and agrees with experimental measurements.
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Figure 4.8: Bobbin coil above conductive half space with a slot. The coil and slot parameters

are given in Table 4.3.

Table 4.3: Parameters of test experiment for a bobbin coil above a half-space conductor. The

configuration is shown in Fig. 4.8.

Coil

Inner radius (r1) 6.15± 0.05 mm

Outer radius (r2) 12.4± 0.05 mm

Length (`) 6.15± 0.1 mm

Number of turns (N) 3790

Lift-off (λ) 0.88 mm

Test Specimen

Conductivity (σ) 3.06± 0.02× 107 S/m

Thickness 12.22± 0.02 mm

Defect

Length (2c) 12.60± 0.02 mm

Depth (h) 5.00± 0.05 mm

Width (w) 0.28± 0.01 mm

Other Parameters

Frequency (f) 900 Hz

Skin depth at 900 Hz (δ) 3.03 mm

Isolated coil inductance (L) 221.8± 0.04 mH
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Figure 4.9: Change in (a) coil resistance, ∆R and (b) coil reactance, ∆X due to the slot as a

function of coil-center position for the experimental configuration described in Table 4.3. The

numerical result (solid line) and experimental data (+) are shown for comparison.
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4.9.2 Dipole Density Distribution over Crack Surface

The electric current dipole distribution is plotted to verify the result. Figure 4.10 shows

the electric current dipole distribution over the crack surface calculated from (4.66) for an open

longitudinal crack around borehole. The details of the parameters are given later. According to

the definition in (4.5), the current dipole should be zero along the boundary of the conductor.

This is confirmed in the result.

Experiments have also been carried out to test the predictions of coil impedance due to

cracks around a borehole using two aluminum alloy specimens by my colleague, Yuan Ji at

Center of NDE, Iowa State University. The parameters for the experiment are listed in Ta-

ble 4.1. There is a semi-elliptical transverse notch cut in a test-piece and a similar longitudinal

notch in another test-piece, Fig. 4.11.

4.9.3 Transverse and Longitudinal Cracks around a Borehole

Although most coil dimensions were measured using a microscope to an accuracy of 20µm,
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Figure 4.10: The distribution of electric current dipole density over crack surface for a longi-

tudinal crack around the borehole.
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Figure 4.11: A rotary coil inside borehole with a longitudinal crack. The coil and crack pa-

rameters are given in Table 4.1.

the lift off of the coil was difficult to measure directly. It was determined by parameter fitting to

multi-frequency coil impedance measurements inside a borehole. Coil impedance measurements

and their variation with position are made with Agilent 4294A impedance analyzer and a four

axis (x, y, z, and φ) computer controlled precision scanner.

A comparison of impedance predictions with measurement is shown in Fig. 4.12 for the

transverse crack and Fig. 4.13 for the longitudinal crack at 40 kHz. The error was due to the

uncertainties of the dimension measurements, such as lift-off and the notch opening. Tilt of

the coil is another factor which might affect the measurement.

4.10 Summary

A crack model is developed for the interaction of an induction coil with a crack near a

borehole in a conductor. Equivalent current dipole is used to represent a thin crack as a

secondary source in the conductor. A volume integral equation is set up to calculate this

equivalent source through a dyadic Green’s kernel. The kernel is derived based on a point



www.manaraa.com

60

−60 −40 −20 0 20 40 60

0

0.1

0.2

0.3

0.4

0.5

0.6

Coil Position [mm]

∆
R

[Ω
]

(a)

−60 −40 −20 0 20 40 60

0

0.5

1

1.5

2

2.5

3

Coil Position [mm]

∆
X

[Ω
]

Prediction
Measurement

(b)

Figure 4.12: Change in (a) coil resistance, ∆R and (b) coil reactance, ∆X due to the transverse

crack as a function of coil-center position for the experimental configuration described in Fig. 4.2

and Table 4.1. The numerical result (solid line) and experimental measurement (+) are shown

for comparison.
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Figure 4.13: Change in (a) coil resistance, ∆R and (b) coil reactance, ∆X due to the longitu-

dinal crack as a function of coil-center position for the experimental configuration described in

Fig. 4.2 and Table 4.1. The numerical result (solid line) and experimental measurement (+)

are shown for comparison.
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source in the borehole. The fields are decomposed as TE and TM modes. These two modes

are coupled in this problem due to the boundary conditions at the cylindrical interface. The

Green’s kernel is expressed as the sum of a singular unbounded domain term, plus a regular

term due to the material boundaries. The coil impedance is determined from the dipole source

and incident field.

Numerical issues are discussed to make sure the program implementation is correct, fast,

and accurate. Algorithms are proposed to deal with the calculation of Bessel functions in the

formulation. Series convergence is also considered.

The crack model is validated first by calculating the coil impedance change due to a crack in

a half-space conductor. The approximation is made by assigning a large radius to the borehole

model. Good agreement is obtained. The code shows good performance in this harsh case.

Predictions of a transverse crack and a longitudinal crack in the borehole are also validated by

comparing with experimental measurements.
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CHAPTER 5. COIL IMPEDANCE CHANGE DUE TO CRACKS IN A

TUBE

Cylindrical layered structure, such as optical fibers in the high-speed network and pipelines

in the petroleum transportation, plays an important role in the engineering and manufacturing

industry. In this chapter, the theoretical model for coil signal due to cracks in a conductive

tube is presented.

The study of electromagnetic waves in cylindrical layered structure can be extended from

the cases with a single interface like the borehole model discussed in the last chapter. With

reflection coefficients obtained for single interface, the transmission and reflection coefficients

due to multiple circularly cylindrical boundaries are considered in the tube model. TE and TM

modes are coupled at cylindrical borehole surface due to continuity boundary conditions. The

reflection and transmission coefficients are expressed as a two-by-two matrix form to describe

this coupling and self-interaction. For the tube problem, this concept is further extended

by introducing the total reflection and transmission coefficients due to multiple cylindrical

interfaces obtained with certain matrices operations. The fundamental ideas, which have been

presented by Chew [118], are used in our derivation. In Chew’s work, the scattering problems

are the main concern and the axial components of the electric and magnetic fields, Ez and Hz

are used to characterize vector fields and the coupling, instead of scalar TE and TM potentials

we used before. TE and TM modes have different meaning in that book. In this chapter, we

will emphasize the issues related to EC problems and its difference from the typical scattering

problems.

Like discussed in Chapter 4, the same truncation scheme is used here for consistency, which

means the domain of the infinitely long tube is truncated in the axial direction with two different

truncation boundary conditions and the solution is expressed in terms of series. Again, two by
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two matrix is used to represent the interaction between TE and TM modes here.

5.1 Introduction

In this chapter, a through-wall crack in an infinitely long tube is considered. The impedance

change of an arbitrary coil due to the crack is derived, Fig. 5.1. We assume that the conductor

has the linear material properties with conductivity σ0 and the permeability of free space, µ0.

The crack model stated in Chapter 4 is still valid for the tube structure. However, the

reflection coefficients have to be modified by considering multiple reflections in a tube due

to multiple cylindrical interfaces. Hence, the matrix element in volume element method is

changed. We start by formulating the total transmission and reflection coefficients first, then

the matrix elements in crack problems are re-derived. Finally, numerical results are compared

with experimental measurements to validate the tube model.

5.2 Transmission and Reflection due to Single Cylindrical Interface

For a source outside a borehole structure, the transmission and reflection coefficients are

derived in Section 4.4 to get the Green’s function. Transmission and reflection coefficients for

Figure 5.1: A rotary coil insider a tube in the presence of a through-wall longitudinal notch.
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a source inside a borehole are formulated in Appendix D to obtain the incident field for the

borehole configuration. To extend these cases to more general purpose, the medium inside

borehole with any material is re-formulated first. The fields are expressed in terms of scalar

TE and TM potentials and these two potential satisfy Helmholtz equation

(∇2 + k2)W = 0. (5.1)

The Fourier series expansion are used in the azimuthal and axial directions

Wa =
∞∑

m=−∞
eımφ

∞∑
s=1

W̃am sin(κsz), (5.2)

and

Wb =
∞∑

m=−∞
eımφ

∞∑
s=1

W̃bm cos(κsz), (5.3)

where eigenvalues are given by

κs = (2s− 1)π/2h s = 1, 2, 3, . . . (5.4)

In (5.2) and (5.3), the Fourier series W̃m satisfy the Bessel equation

1

ρ

∂

∂ρ

(
ρ
∂W̃m

∂ρ

)
−
(
γ2
s +

m2

ρ2

)
W̃m = 0 (5.5)

with γ2
s = κ2

s − k2. For the following derivation, we will use the Fourier transform of the scalar

potentials, W̃am and W̃bm to represent the fields and the mode index s will be dropped to avoid

a conflict with the region index i.

The region inside the borehole is designated as region 1, and the region outside the borehole

is named as region 2. Assume the conductivity and permeability in region i are σi and µi, with

i = 1, 2. The interface is located at ρ = b between region 1 and 2. We derive the transmission

and reflection due to this cylindrical interface based on the location of the source. In other

words, an outgoing wave incidence and an incoming wave incidence are considered separately.

5.2.1 Transmission and Reflection for an Outgoing Wave

For a source inside region 1, Fig. 5.2, an outgoing wave is incident on a circularly cylindrical

interface, the Fourier transform of TE and TM fields between the source and the cylindrical
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12

σ1σ2

Figure 5.2: Transmission and reflection of an outgoing wave. The arrows represent components

of the field that migrate from the source, migrate from the boundary back towards the source,

and transmitted into the outside of borehole.

boundary ρ = b can be expressed as W̃
(1)
am

W̃
(1)
bm

 =

[
Km(γ1ρ)

Km(γ1b)
I +

Im(γ1ρ)

Im(γ1b)
Γ21

]
· a1m, (5.6)

and Fourier transform of the potentials in region 2 has the form W̃
(2)
am

W̃
(2)
bm

 =
Km(γ2ρ)

Km(γ2b)
T21 · a1m, (5.7)

where a1 is the coefficient which is determined by the source inside region 1 and I is two-by-

two identity matrix. Here, γ2
i = κ2 − k2

i with i = 1, 2 for two regions and ki is zero for a

nonconductive region. The two-by-two matrix Γ21 represents the reflection matrix due to the

outgoing source in region 1. Similar to (4.46), its diagonal terms denote the self-interaction of

the modes and the off-diagonal terms denote the coupling from TE mode to TM mode or the

one from TM mode to TE mode.

In (5.6) and (5.7), we prefer to make explicit the additional geometric factors,
Km(γ1ρ)

Km(γ1b)

and
Im(γ1ρ)

Im(γ1b)
, which it seems best to separate from the transmission and reflection matrices.
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This becomes important from the program’s point of view and it is helpful in the numerical

calculation.

Given TE and TM potentials, the electric and magnetic fields can be derived from (4.31)

and (4.32). The z-components of electric and magnetic fields can be expressed as H̃
(i)
zm

Ẽ
(i)
zm/ıω

 = γ2
i Iµi

 W̃
(i)
a

W̃
(i)
b

 , (5.8)

and the φ-components have the form H̃
(i)
φm

Ẽ
(i)
φm/ıω

 = Iµi

 ımκ/b −k2
i ∂ρ

∂ρ ımκ/b


 W̃

(i)
a

W̃
(i)
b

 , (5.9)

where the notation Iµi is defined as

Iµi =

 1 0

0 µi

 .
At the borehole boundary ρ = b, the continuity conditions of tangential electric and mag-

netic fields yield

γ2
1Iµ1 [I + Γ21] = γ2

2Iµ2T21, (5.10)

Iµ1 [Mm(γ1b) + Λm(γ1b)Γ21] = Iµ2Mm(γ2b)T21 (5.11)

where the functions M(γiρ) and Λ(γiρ) are defined as

Bm(γiρ) =

 ımκ −k2
iBm(γiρ)

Bm(γiρ) ımκ

 . (5.12)

and functions M(x) or Λ(x) are defined in (4.51). From (5.10), we have

γ2
2T21 = γ2

1I−1
µ2 Iµ1 [I + Γ21] , (5.13)

where I−1
µ2 represents the inverse of matrix Iµ2. Multiplying (5.11) with γ2

2 and substituting

γ2
2T21 into the equation, the reflection coefficients can be solved from

−
[
γ2

1Iµ2Mm(γ2b)I
−1
µ2 Iµ1 − γ2

2Iµ1Λm(γ1b)
]
Γ21

= γ2
1Iµ2Mm(γ2b)I

−1
µ2 Iµ1 − γ2

2Iµ1Mm(γ1b) (5.14)
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and the result is

Γ21 = γ2
2Q−1

21 Iµ1 [Λm(γ1b)−Mm(γ1b)]− I, (5.15)

where

Q21 = −
[
γ2

1Iµ2Mm(γ2b)I
−1
µ2 Iµ1 − γ2

2Iµ1Λm(γ1b)
]
, (5.16)

and

Λm(γ1b)−Mm(γ1b) =
1

Im(γ1b)Km(γ1b)

 0 −k2
1

1 0

 .
Meanwhile, the transmission coefficients can be obtained from (5.13) and (5.15)

T21 = γ2
1I−1
µ2 Iµ1Q

−1
21 Iµ1 [Λm(γ1b)−Mm(γ1b)] . (5.17)

Equations (5.15) and (5.17) give the transmission and reflection matrices for an outgoing

wave corresponding to the order m and mode κ.

5.2.2 Transmission and Reflection for an Incoming Wave

For a source located outside the borehole interface, it is equivalent to an incoming wave is

incident on a cylindrical boundary, Fig. 5.3. Fourier transform of the potentials in region 1

(ρ < b) can be written as

12

σ1σ2

Figure 5.3: Transmission and reflection of an incoming wave. The arrows represent components

of the field that migrate from the source, migrate from the boundary back towards the source,

and transmitted through the interface into the borehole.
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 W̃
(1)
am

W̃
(1)
bm

 =
Im(γ1ρ)

Im(γ1b)
T12 · a2m, (5.18)

and Fourier transform of the potentials inbetween the boundary and the source in region 2 has

the form  W̃
(2)
am

W̃
(2)
bm

 =

[
Im(γ2ρ)

Im(γ2b)
I +

Km(γ2ρ)

Km(γ2b)
Γ12

]
· a2m. (5.19)

Here, transmission and reflection matrices have the same meaning as those for the source in

region 1.

Similarly, the continuity conditions at ρ = b can be used to obtain the following matrix

equations

γ2
1Iµ1T12 = γ2

2Iµ2 [I + Γ12] , (5.20)

Iµ1Λm(γ1b)T12 = Iµ2 [Λm(γ2b) + Mm(γ2b)Γ12] . (5.21)

From (5.20), we have

γ2
1T12 = γ2

2I−1
µ1 Iµ2 [I + Γ12] . (5.22)

Multiplying (5.21) with γ2
1 and substituting γ2

1T12 into the equation, the reflection matrix can

be solved from the following equation

−
[
γ2

2Iµ1Λm(γ1b)I
−1
µ1 Iµ2 − γ2

1Iµ2Mm(γ2b)
]
Γ12

= γ2
2Iµ1Λm(γ1b)I

−1
µ1 Iµ2 − γ2

1Iµ2Λm(γ2b), (5.23)

and the reflection matrix is given by

Γ12 = γ2
1Q−1

12 Iµ2 [Λm(γ2b)−Mm(γ2b)]− I, (5.24)

where

Q12 = γ2
2Iµ1Λm(γ1b)I

−1
µ1 Iµ2 − γ2

1Iµ2Mm(γ2b). (5.25)

Then the transmission coefficient is obtained by substituting (5.24) into (5.22)

T12 = γ2
2I−1
µ1 Iµ2Q

−1
12 Iµ2 [Λm(γ2b)−Mm(γ2b)] . (5.26)
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The transmission and reflection matrices for an incoming wave incidence with a given order

m and mode κ are obtained in (5.24) and (5.26).

For an axially symmetric case where only zeroth-order solution (m = 0) is required, TE

and TM modes are decoupled. The off-diagonal terms of Γ and T become zero. If the medium

in region 1 is free space, the transmission and reflection matrices are reduced to those derived

in Chapter 4 and Appendix D. With above solutions for a single cylindrical interface, the more

complicated problems with multiple cylindrical interfaces can be set up as follows.

5.3 Transmission and Reflection due to Multiple Cylindrical Interfaces

Now let’s consider the derivation of transmission and reflection matrices due to multilayered

medium. The tube is a simplest case with three media and two interfaces. The tube model

can be directly extended to other multilayered structures. Therefore, we only discuss the tube

problem here. The basic idea is similar to the theory for the transmission and reflection of

multiple planar interfaces [3]. We designate the regions from the inside to the outside as region

1, 2, and 3. The interface between region 1 and 2 is at ρ = a and the interface between region

2 and 3 is located at ρ = b, Fig. 5.4.

123

σ1σ2σ3

ρ = b

ρ = a

Figure 5.4: Transmission and reflection of an outgoing wave inside a tube.
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5.3.1 Source Located inside a Tube

For a source located in region 1, an outgoing wave incident on the tube, the Fourier trans-

form of total field in region 1 can be written as W̃
(1)
am

W̃
(1)
bm

 =

[
Km(γ1ρ)

Km(γ1a)
I +

Im(γ1ρ)

Im(γ1a)
Γ̃21

]
· a1m, (5.27)

where the tilde sign on the reflection matrix, such as Γ̃21, represents a generalized total reflection

matrix which will be determined later. Fourier transform of the fields in region 2 has the form W̃
(2)
am

W̃
(2)
bm

 =

[
Km(γ2ρ)

Km(γ2b)
I +

Im(γ2ρ)

Im(γ2b)
Γ32

]
· a2m, (5.28)

where Γ32 is the reflection matrix representing the reflected fields migrating from the interface

ρ = b due to a source between region 2 and region 3 derived and its definition is given in the

last two sections. The vector a2m is an unknown vector to be determined and it represents the

total outgoing field in region 2. Moreover, Fourier transform of the fields in region 3 is given

by  W̃
(3)
am

W̃
(3)
bm

 =
Km(γ3ρ)

Km(γ3b)
a3m, (5.29)

where a3m is the second unknown vector in this problem.

At the interface ρ = a, the outgoing field in region 2 consists of two parts, the transmission

of an outgoing wave in region 1 and the reflection of the outgoing wave itself in region 2.

Therefore, we have

a2m

Km(γ2b)
=
Km(γ1a)

Km(γ2a)
T21 ·

a1m

Km(γ1a)
+

Im(γ2a)

Km(γ2a)
Γ12 ·

Km(γ2b)

Im(γ2b)
Γ32 ·

a2m

Km(γ2b)
. (5.30)

From (5.30), a2m can be expressed as

a2m =
Km(γ2b)

Km(γ2a)

(
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ12 · Γ32

)−1

·T21 · a1m. (5.31)

In addition, the incoming wave in region 1 comes from the reflection of the outgoing wave

in region 1 and the transmission of an incoming wave in region 2. So, at ρ = a, we have that

1

Im(γ1a)
Γ̃21 · a1m =

Km(γ1a)

Im(γ1a)
Γ21 ·

a1m

Km(γ1a)
+
Im(γ2a)

Im(γ1a)
T12 ·

Km(γ2b)

Im(γ2b)
Γ32 ·

a2m

Km(γ2b)
. (5.32)



www.manaraa.com

72

Substituting (5.31) into (5.32), we get the total reflection matrix

Γ̃21 = Γ21 +
Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
T12 · Γ32 ·

(
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ12 · Γ32

)−1

·T21. (5.33)

All the transmission and reflection matrices in (5.33) are defined in the previous sections. If

there is another extra layer presented outside region 3, all we need to do is to modify the terms

related to reflection matrix, Γ32 with corresponding total the reflection matrix, Γ̃32. Finally,

the reflection matrix for any multilayered structure could be derived iteratively using (5.33).

5.3.2 Source Located outside a Tube

Similarly, for a source located in region 3, Fig. 5.5, Fourier transform of the total fields in

region 1 is  W̃
(1)
am

W̃
(1)
bm

 =
Im(γ1ρ)

Im(γ1a)
a1m, (5.34)

and Fourier transform of the fields in region 2 can be written as W̃
(2)
am

W̃
(2)
bm

 =

[
Km(γ2ρ)

Km(γ2a)
Γ12 +

Im(γ2ρ)

Im(γ2a)
I

]
· a2m. (5.35)

Finally, Fourier transform of the fields in region 3 is,

123

σ1σ2σ3

ρ = b

ρ = a

Figure 5.5: Transmission and reflection of an incoming wave outside a tube.
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 W̃
(3)
am

W̃
(3)
bm

 =

[
Km(γ3ρ)

Km(γ3b)
Γ̃23 +

Im(γ3ρ)

Im(γ3b)
I

]
· a3m. (5.36)

where Γ̃23 is the total reflection matrix. In this case, vector a3m represents the source field and

vectors a1m and a2m are unknown coefficients for the incoming fields in each region.

The same approach is used to derive the reflection matrix Γ̃23. At the interface ρ = b, we

have

a2m

Im(γ2a)
=
Im(γ3b)

Im(γ2b)
T23 ·

a3m

Im(γ3b)
+
Km(γ2b)

Im(γ2b)
Γ32 ·

Im(γ2a)

Km(γ2a)
Γ12 ·

a2m

Im(γ2a)
. (5.37)

The incoming fields in region 2 come from the transmission of the incoming field in region 3

and the reflection of the incoming fields in region 2 and it could be solved from (5.37) as

a2m =
Im(γ2a)

Im(γ2b)

(
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ32 · Γ12

)−1

·T23 · a3m. (5.38)

The reflection wave in region 3 can be solved from

1

Km(γ3b)
Γ̃23 · a3m =

Im(γ3b)

Km(γ3b)
Γ23 ·

a3m

Im(γ3b)
+
Km(γ2b)

Km(γ3b)
T32 ·

Im(γ2a)

Km(γ2a)
Γ12 ·

a2m

Im(γ2a)
. (5.39)

This means the outgoing wave in region 3 is a consequence of the transmission of the outgoing

wave in region 2 and the reflection of the incoming wave in region 3. Substituting (5.38) into

(5.39), we obtain the total reflection matrix for a source in region 3

Γ̃23 = Γ23 +
Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
T32 · Γ12 ·

(
I− Im(γ2a)Km(γ2b)

Im(γ2b)Km(γ2a)
Γ32 · Γ12

)−1

·T23. (5.40)

Equation (5.40) can be extended for multiple layered structure by modifying the reflection

matrix Γ12. The results presented here are similar to those in Chew’s work [118]. Some

normalizing factors are introduced in our formulation to prevent the numerical overflows in the

calculation.

With the total reflection matrices derived in (5.33) and (5.40), the incident fields due an

eddy-current coil inside or outside a tube can be obtained by replacing the original reflection

coefficients for the borehole case. If we make the conductivity σ3 equals to σ2 in the calculation,

or extend the outer radius of the tube, b to the infinite, the transmission and reflection matrices

become the ones for a single cylindrical interface.
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5.4 Incident Field in an Infinitely Long Tube

The incident field calculation for a rotary coil inside a borehole is provided in Appendix D.

With the total reflection derived from the previous section, the incident field for a rotary coil

inside a tube can be easily obtained by replacing the transmission and reflection coefficients

in (D.5) and (D.10) with the corresponding terms in (5.33). In this chapter, we introduced

different geometric factor in our TE and TM potential definitions. That’s the only difference

we need to modify from the borehole model when we calculate the incident field calculation.

The impedance change due to the tube can be also derived from the original form of the

impedance change of a coil inside borehole (D.7) and it is given by

∆Z =
ıωπh

µ0I2

∞∑
m=−∞

∞∑
i=1

κ2
i

a1a

Km(κia)

Km(κia)

Im(κia)
Γ̃aa21

a1a

Km(κia)

=
ıωπh

µ0I2

∞∑
m=−∞

∞∑
i=1

κ2
i Γ̃

aa
21a

2
1a

Im(κia)Km(κia)
(5.41)

where a1a is the TE component of the source coefficient a1m and C
(0)
mi in (D.7) is equivalent to

a1a

Km(κia)
here.

5.5 Green’s Function for a Point Source in a Tube

Now, Let’s consider a point source embedded in walls of a tube, Fig. 5.6. The corresponding

TE/TM potentials can also be represented as a two-by-two Green’s function matrix whose

Fourier space representation takes form

G̃(ρ, ρ′,m) = Im(γρ<)Km(γρ>)I +Km(γρ)Am + Im(γρ)Bm, (5.42)

where the first term Im(γρ<)Km(γρ>)I is from the Green’s function in a homogeneous un-

bounded conductor. The other two terms represent the migration from inner and outer inter-

faces and the coefficient matrices, Am and Bm, can be expressed as

Bm =
Km(γb)

Im(γb)
Γ32

[
Im(γρ′)I + Am

]
, (5.43)

at ρ = b, and

Am =
Im(γa)

Km(γa)
Γ12

[
Km(γρ′)I + Bm

]
, (5.44)
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123

σ = 0σ = σ0σ = 0

Figure 5.6: A point source located between the walls of a tube. The conductivity of the tube

is σ0.

at ρ = a.

From (5.43) and (5.44), one can solve Am and Bm as

Am =
Im(γa)

Km(γa)
Q+Γ12

[
Km(γρ′)I +

Km(γb)

Im(γb)
Im(γρ′)Γ32

]
, (5.45)

Bm =
Km(γb)

Im(γb)
Q−Γ32

[
Im(γρ′)I +

Im(γa)

Km(γa)
Km(γρ′)Γ12

]
, (5.46)

where

Q+ =

[
I− Im(γa)Km(γb)

Im(γb)Km(γa)
Γ12Γ32

]−1

, (5.47)

and

Q− =

[
I− Im(γa)Km(γb)

Im(γb)Km(γa)
Γ32Γ12

]−1

. (5.48)

Q+ and Q− are related to each other as

Q−Γ32 = Γ32Q+, (5.49)

and

Q+Γ12 = Γ12Q−. (5.50)

Therefore, we can write that

I +
Im(γa)Km(γb)

Im(γb)Km(γa)
Γ12Q−Γ32 = Q+, (5.51)
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and

I +
Im(γa)Km(γb)

Im(γb)Km(γa)
Γ32Q+Γ12 = Q−. (5.52)

Substituting (5.45) and (5.46) into (5.42), with above relations, Fourier transform of the Green’s

function can be written as

G̃(ρ, ρ′,m) =

[
Km(γρ)I +

Km(γb)

Im(γb)
Im(γρ)Γ32

]
·Q+ ·

[
Im(γρ′)I +

Im(γa)

Km(γa)
Km(γρ′)Γ12

]
,

(5.53)

for ρ > ρ′ and

G̃(ρ, ρ′,m) =

[
Im(γρ)I +

Im(γa)

Km(γa)
Km(γρ)Γ12

]
·Q− ·

[
Km(γρ′)I +

Km(γb)

Im(γb)
Im(γρ′)Γ32

]
,

(5.54)

for ρ < ρ′.

The regular terms in (5.42) are then given by

G̃(Γ)(ρ, ρ′,m)

= Km(γρ)Am + Im(γρ)Bm

= Km(γρ′)
Im(γa)

Km(γa)

[
Km(γρ)I + Im(γρ)

Km(γb)

Im(γb)
Γ32

]
Q+Γ12

+ Im(γρ′)
Km(γb)

Im(γb)

[
Im(γρ)I +Km(γρ)

Im(γa)

Km(γa)
Γ12

]
Q−Γ32. (5.55)

Compared to the borehole problem, the singular part in an unbounded domain is the same

as that in the borehole model but the reflection part is changed to (5.55). This completes

derivation of the Green’s function for a point source in a tube.

5.6 Reflection Matrix Element for a Longitudinal Crack

With the scalar Green’s function derived in the previous section, the function U due to a

point source in a tube is similar to that in (4.46) and it has the form

U(r|r′) =

 Ua

Ub

 =
1

πh

∞∑
m=−∞

eım(φ−φ′)
∞∑
s=1

 sin(κsz) 0

0 cos(κsz)


 Ũaa Ũab

Ũba Ũbb


 sin(κsz

′)

cos(κsz
′)

 ,
(5.56)
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where  Ũaa Ũab

Ũba Ũbb

 = − 1

γ2
s

 G̃aa G̃ab

G̃ba G̃bb

 . (5.57)

The reflection part of the dyadic Green’s function in (4.28) can be rewritten into matrix form

as

G (Γ)(r|r′) =

 ∇× ẑ

∇×∇× ẑ


T  Uaa Uab

Uba Ubb


 ∇′ × ẑ

1

k2
∇′ ×∇′ × ẑ

 , (5.58)

where the superscript T is the transpose operator.

The crack model is the same as we used in the borehole problem. In order to solve the

current dipole density over the crack region, the kernel, Gnn(r|r′) is needed in the volume

integral method. We will only discuss a longitudinal crack in a tube here. For the longitudinal

crack, the integral kernel related to the reflection part of the dyadic Green’s function can be

obtained as

G
(Γ)
φφ (r|r′)

= φ̂ · G (Γ)(r|r′) · φ̂

= − 1

πh

∞∑
m=−∞

eım(φ−φ′)
∞∑
s=1

sin(κsz) sin(κsz
′)

γ2
s


∂

∂ρ

ımκs
ρ


T

G̃(Γ)(ρ, ρ′,m)


∂

∂ρ′

−ımκs
k2ρ′

 ,(5.59)

where the Fourier representation of the reflection part of the Green’s function G̃(Γ)(ρ, ρ′,m) is

given in (5.55).

Finally, the reflection matrix element is derived based on volume integral over the source

cell l has the form

M
(Γ)
jl = k2

∫ zc+∆z/2

zc−∆z/2

∫ φc+∆φ/2

φc−∆φ/2

∫ ρ2

ρ1

ρ′G
(Γ)
φφ (rj |r′) dρ′ dφ′ dz′,

where the integral over φ′ gives∫ ∆φ/2

−∆φ/2
e−ımφ

′
dφ′ = ∆φ sinc

(
m∆φ

2

)
, (5.60)

and the integral over z′ gives∫ zc+ ∆z
2

zc−∆z
2

sin(uz′) dz′ = ∆z sin (uzc) sinc

(
u

∆z

2

)
. (5.61)
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The integral over variable ρ′,
∫ ρ2

ρ1
ρ′G̃

(Γ)
φφ dρ′, is cumbersome but the derivation is straightforward

and similar to those given in the borehole case. Therefore, they will not list them here.

The matrix element related to the unbounded domain Green’s function is the same as that

in (4.61). Using the volume element method, the impedance change of a coil due to a crack in a

tube can be obtained. Next, the numerical results and experimental validations are presented.

5.7 Experimental Measurements and Results

In this section, the coil impedance change due to a through-wall crack in a tube is tested.

The results are compared with the plate cases for an extreme case with large radius. A well

controlled experiment is also presented to validate our crack calculation. Good agreement is

obtained between theoretical predictions and measurement data.

The numerical techniques used in the borehole model has also been applied to the tube code

for the matrix element calculation. We examine a special case with the large radius first. The

singular matrix elements are calculated using MATLAB internal integral function with log-like

Gaussian quadrature and the reflection matrix elements are evaluated using the recurrence

algorithm in Section 4.7.

5.7.1 Through-Thickness Crack in Thin Plate

Through-thickness cracks in a thin plate has been well developed by Burke et al. [36, 13].

A bobbin coil above a brass plate is used to measure the coil impedance change due to a slot

in the thin plate as a function of the coil position. All the parameters are listed in Table 5.1.

Here, we use our tube model to approximate this problem by putting a rotary coil inside a

tube with a large inner radius, a = 200 mm. Two cases with slot length 44.4 mm and 101 mm

are validated here. As shown in Figs. 5.7 and 5.8, the predicted coil impedance change due to

the slot with the same size in the tube is calculated and compared with the measurement for a

slot in a thin plate. The numerical results show a reasonable agreement with the measurement

data.

Next, coil impedance change due a through-wall notch in a tube is considered. The exper-

iment is presented first and then predictions are compared with measurements.
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Table 5.1: Parameters of test experiment for a bobbin coil above a thin plate. The configuration

is similar to Fig. 4.8.

Coil

Inner radius (r1) 9.33 mm

Outer radius (r2) 18.04 mm

Height (`) 10.05 mm

Lift-off (λ) 1.87 mm

Number of turns (N) 1910

Test Specimen

Plate height (h) 0.90± 0.01 mm

Conductivity (σ) 16.42 MS/m

Relative permeability (µr) 1

Through-Thickness Cracks

Length (2c) 44.4 mm, 101 mm

Height (h) 0.90± 0.01 mm

Width (w) 0.3 mm

Other Parameters

Frequency (f) 1 kHz

Isolated DC coil inductance (L0) 84.2µH

Isolated DC resistance (R0) 260 Ω

5.7.2 Experimental Configuration

The experimental work was done by my colleague, Yuan Ji at Center for NDE, Iowa State

University. This work has been submitted as a benchmark problem to the world federation

of NDE. In this benchmark problem, we measured the impedance of a pancake coil due to

a longitudinal through-wall notch inside a tube. Besides other parameters measured in the

experiment, coil lift-off and tube conductivity can not be measured directly and they were

determined based on the multifrequency impedance data with the theoretical model. All the

measurement data have been corrected to remove the parasitic capacitance effects.

We have carried out a controlled experiment to acquire eddy current impedance measure-

ments using a rotary pancake coil interacting with a longitudinal through-wall notch in an

inconel 600 tube. The data provides a means of testing theoretical and computational models

that predict the variation in the coil impedance with position due to the presence of the notch

or crack. Figure 5.9 shows the schematic diagram of the coil in the tube.

The tube has the permeability of free space (µr = 1). Its inner diameter is 16.64±0.025 mm,
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Figure 5.7: Coil resistance change (a) and reactance change (b) due to a notch as a function of

coil center position at a fixed frequency of 1 kHz. The slot length is 44.4 mm. The numerical

result (solid line) and the experimental measurements (+) are shown for comparison.
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Figure 5.8: Coil resistance change (a) and reactance change (b) due to a notch as a function

of coil center position at a fixed frequency of 1 kHz. The slot length is 101 mm. The numerical

result (solid line) and the experimental measurements (+) are shown for comparison.
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Figure 5.9: A rotary pancake coil inside a tube.

and the outer diameter 18.99 ± 0.025 mm. The probe is an air-cored eddy-current coil with a

rectangular cross section, Fig. 5.9. Coil parameters are listed in Table 5.2. The longitudinal

through-wall air-filled notch is a straight slit cut along at a plane through the tube axis with a

length of 12.20 mm, the depth is 100% of the tube wall thickness, and the width of the opening

is 85µm.

Other important parameters, including the conductivity of the tube, the coil lift-off (λ =

b − x2, in the notation illustrated in Fig. 5.9, and the coil operating frequencies are given in

the following section.

5.7.3 Measurement Procedure

Measurements were carried out with the tube supported on a platform which was mounted

on three motion stages, Fig. 5.10. From the bottom up, these were a 5 micron resolution xy-

stage, a rotary stage and a manually adjusted tilt stage. A set-up procedure ensures that the

tube axis and rotary stages have a common axis in line with the z-axis motion stage for the

probe. Care over alignment and the fact that the coil mount is a close sliding fit in the tube

ensure that the coil is scanned parallel to the inner surface of the tube and variations in the

critical lift-off parameter, λ, are minimized.
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Table 5.2: Parameters of test experiment for a rotary coil inside the tube. The configuration

is shown in Fig. 5.9.

Coil

Inner radius (r1) 1.529± 0.004 mm

Outer radius (r2) 3.918± 0.003 mm

Height (` = x2 − x1) 1.044± 0.005 mm

Lift-off (λ) 1.235 mm

Number of turns (N) 305

Test Specimen

Tube inner diameter (2a) 16.64± 0.025 mm

Tube outer diameter (2b) 18.99± 0.025 mm

Conductivity (σ) 0.84 MS/m

Relative permeability (µr) 1

Longitudinal Notch

Through-wall notch 1.175× 12.20 mm2

Width (w) 0.085 mm

Other Parameters

Skin depth at 100 kHz (δ) 1.7365 mm

Isolated DC coil inductance (L0) 465µH

Isolated coil resistance (R0) 19.00 Ω

Coil mount

Pancake coil

Inconel tube

Tilt stage

Rotary stage

Figure 5.10: Experimental configuration used to measure the coil impedance change due to the

notch in a tube.
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Direct measurement of lift-off using for example a traveling microscope may be possible but

in earlier benchmark studies the lift-off parameter has been deduced from multi-frequency eddy

current coil impedance measurements [119] using model-based estimates of the probe response

on an unflawed region of the conductor fitted to the experimental data by varying the lift-

off. This approach is likely to be more reliable than a direct measurement and also reveals the

effects of shunt capacitance in the probe circuit as the experimental results depart from idealized

capacitance-free model predictions at high frequency. Knowledge of the shunt capacitance can

then be used to correct the measurement data for its effect on the flaw signals [119].

Estimating the conductivity of the tube could be done using an eddy current conductivity

meter but the instruments are inaccurate for samples that are not flat. Instead one can use the

multifrequency impedance data provided here to determine both lift-off and tube conductivity.

The coil impedance in air was measured first over a frequency range 0.5 kHz to 500 kHz. Then

the impedance due to the unflawed tube was measured over the same frequency range by putting

the probe at points far away from cracks. Ideally, the impedance change due to the unflawed

tube could be obtained by simply subtracting impedance in air from the one inside tube. In

practice, parasitic shunt capacitance has an noticeable effect on the coil impedance at high

frequencies but a correction has been applied to the data as in [119]. Finally, the effective value

of coil lift-off and tube conductivity have been determined by fitting the measurement data with

the calculation based on the theoretical model for a rotary coil inside the tube [83, 93, 118].

Figure 5.11 shows the multifrequency impedance data from both theoretical calculation and

the corrected measurement data. We also plotted the same data on the impedance plane as

shown in Fig. 5.12. In our theoretical model, the effective value of coil lift-off is 1.235 mm and

the tube conductivity is 0.84 MS/m.

The coil impedance change due to the crack was measured as the z-coordinate of the coil

was varied incrementally as it passed symmetrically over the notch. The scan was carried out

at 25 kHz, 50 kHz, 100 kHz, 150 kHz, and 200 kHz, respectively. Again, the measurement data

have been corrected for capacitance effects [119] and the background signals have also been

removed from the corrected data to leave only the impedance due to the notch.
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Figure 5.11: Normalized resistance change (a) and reactance change (b) of a rotary coil inside

an unflawed tube as a function of frequency. Both the theoretical result (o) and the corrected

measurement data (+) are plotted.
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Figure 5.12: Normalized impedance change of a rotary coil inside an unflawed tube as a func-

tion of frequency on the impedance plane. Both the theoretical result (o) and the corrected

measurement data (+) are plotted.

5.7.4 Dipole Density over Crack Surface

The electric current dipole distribution is also plotted here to verify our result. Figure 5.13

shows the electric current dipole distribution over the crack surface calculated from (4.66) for

a through-wall longitudinal notch in a tube with the parameters listed in Table 5.2.

5.7.5 Through-Wall Notch in a Tube

The theoretical prediction of the through-wall notch in the tube mentioned before has been

calculated at five different frequencies. It only takes a few minutes to do the calculation for

each frequency. The results are presented in Figs. 5.14–5.18. All the notch measurement data,

including both resistance change and reactance change, are also plotted in Figs. 5.14–5.18 for

reference.
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Figure 5.13: Electric current dipole density over a through-wall notch in a tube.

5.8 Summary

The crack model presented in Chapter 4 is extended to the model for a crack in a tube.

This is achieved by considering the multiple reflection due to the multilayered structure. To

prevent the numerical overflows in the calculation, some normalizing factors are introduced in

our formulation. The interaction between TE and TM modes are considered in the matrix

expression. The theoretical model is validated with the plate problems. A comparison of

impedance predictions and measurements shows good agreement for a through-wall notch in

the tube at multiple operating frequencies. In both cases, the program shows good performance.

The calculation only takes a few minutes.
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Figure 5.14: Change in (a) coil resistance, ∆R and (b) coil reactance, ∆X due to the longitu-

dinal notch as a function of coil center position at frequency 25 kHz.
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Figure 5.15: Change in (a) coil resistance, ∆R and (b) coil reactance, ∆X due to the longitu-

dinal notch as a function of coil center position at frequency 50 kHz.
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Figure 5.16: Change in (a) coil resistance, ∆R and (b) coil reactance, ∆X due to the longitu-

dinal notch as a function of coil center position at frequency 100 kHz.
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Figure 5.17: Change in (a) coil resistance, ∆R and (b) coil reactance, ∆X due to the longitu-

dinal notch as a function of coil center position at frequency 150 kHz.
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Figure 5.18: Change in (a) coil resistance, ∆R and (b) coil reactance, ∆X due to the longitu-

dinal notch as a function of coil center position at frequency 200 kHz.
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CHAPTER 6. COILS AT THE OPENING OF A BOREHOLE IN A

CONDUCTOR

In this chapter, we estimate the impedance changes of coils at the opening of a borehole

in a conductor and compute the induced eddy currents adjacent to the crack free edge as the

incident field for the crack calculation. There is no closed-form analytical solution for this

problem, and TREE method is applied. The solution representing the coil field at the edge of

the hole is expanded into series form. Matrix equations are derived to solve for the expansion

coefficients. The difficulty of this problem is that boundary conditions have to be satisfied at

two surfaces which intersect with each other. The result shows this approach is accurate and

computationally efficient. Theodoulidis and Bowler have solved the coil impedance change with

the same approach [94]. An improved model is presented to remove the zero order terms from

the earlier model and thereby simplify the analysis. This approach can be further extended to

a coil in a hole through a plate and other layered structures.

6.1 Introduction

The edge of a borehole is a critical region because the cracks in a conductor commonly

occur around stress concentrations at the edges. Here, the interaction of an eddy-current coil

with the opening of a borehole in a half-space conductor is considered. Our analysis provides

a foundation for tackling the more complicated problem of a countersunk hole [7, 9].

Both the coil impedance change and the incident field due to a coil around the borehole

opening are calculated. According to the model for ideal or narrow cracks using volume integral

method, this work can be viewed as a part in the process of evaluating the crack signal, the

incident field calculation. In addition, the approach presented here can be extended to derive an
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appropriate Green’s function for the electric field generated by a singular electric dipole source

near the borehole opening, which is the critical step for the crack modeling via an integral

equation formulation. This approach is presented in the next chapter. It also can be adapted

for the related problem of calculating the fields, such as a coil inside a hole through a planar

layered structure.

We consider an induction coil at the opening of a semi-infinite borehole in a conductor,

Fig. 6.1. For this problem, there is no closed-form solution, but an approximate analytical

solution can be found by applying the TREE method. Here, the domain of the borehole problem

is truncated in the axial direction of a cylindrical polar coordinate system. As discussed before,

we expand the axial dependence in terms of Fourier series. However, the eigenvalues, which

represent the eigenmodes supported by the truncated structure, don’t have simple forms as

before because of the non-uniform domain in the axial direction. The expansion coefficients are

determined from a system of matrix equations derived using the continuity conditions of the

field at the radial interface defined by extending the surface of the hole over the entire vertical

length of the domain. This problem can be also solved by numerical methods. Compared to

the general numerical methods, such as finite element method and method of moments, our

Figure 6.1: A rotary coil at the opening of a borehole.
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approach is computationally efficient and the accuracy of the results can be easily controlled

[29].

The impedance change due to a rotary coil at the edge of a hole can be calculated by

matching the modes across the cylindrical interface between different regions of the problem.

We eliminate the zero order expansion in [94] by applying different truncation boundary con-

ditions in the method presented in this chapter. As a result, the solution is simplified and the

computation efficiency is improved. Due to the exponential decay of the eddy current inside

the conductor, this problem is potentially ill-conditioned. In our method, however, a boundary

condition at the borehole surface is used to overcome this difficulty. On the other hand, because

of the limited precision of the calculation, the effect of the numerical overflow has to be avoided

by normalizing the expansion coefficients to restrict their numerical range. The normalization

is also helpful to ameliorate the potential problems with ill-conditioned matrices.

Here we examine the calculation of the field of an arbitrary coil carrying a current varying as

the real part of Ie−ıωt in a cylindrical hole within a domain which is finite in the axial direction,

Fig. 6.1. The electromagnetic fields at the edge of the hole are derived and the change in coil

impedance is calculated. Expressions for both bobbin coil and rotary coil are discussed.

6.2 Formulation

The initially infinite domain problem is truncated in the axial direction to limit the axial

coordinate range to 0 ≤ z ≤ h, Fig. 6.2. By locating the coil sufficiently far from the upper and

lower boundaries, the truncation error can be set at a tolerable level. Instead of the magnetic

field, the magnetic flux density is expressed in terms of scalar potentials

B = ∇×∇× (ẑWa) + k2∇× (ẑWb), (6.1)

where k2 = ıωµ0σ. The electric field is given by

E = ıω [∇× ẑ(Wa) +∇×∇× ẑ(Wb)] . (6.2)

Both For the conductive region, both of the potentials satisfy the Helmholtz equation

(∇2 + k2)W = 0. (6.3)
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Figure 6.2: A rotary coil at the opening of a borehole in a conductor.

Equation (6.3) is reduced to the Laplace equation for the nonconductive region for which k = 0.

The same Fourier series representation with respect to the azimuthal angle is used here

W (ρ, φ, z) =

∞∑
m=−∞

W̃m(ρ, z) eımφ. (6.4)

For convenience, in this chapter, we redefine the scalar potentials as

ψm =
∂W̃am

∂z
, and ϕm = k2W̃bm (6.5)

to represent the TE and TM modes, respectively. According to (6.1) and Appendix A, the

components of the magnetic field are given by

B̃ρm =
∂ψm
∂ρ

+
ım

ρ
ϕm, (6.6)

B̃φm =
ım

ρ
ψm −

∂ϕm
∂ρ

, (6.7)

B̃zm =
∂ψm
∂z

+ k2W̃am. (6.8)

In the nonconductive region B = ∇ψ.
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6.2.1 Formal Solution

By using the separation of variables method, Fourier transform of the solution in (6.3),

W̃m(ρ, z) can be written as a product of two functions, gm(ρ) and fm(z). For the conductive

region, these functions have the form

gm(ρ) = Am(κ)Im(υρ) +Bm(κ)Km(υρ),

fm(z) = Cm(κ) sin(κz) +Dm(κ) cos(κz), (6.9)

where variables, κ and υ have the relationship

υ2 = κ2 − k2. (6.10)

The unknown coefficients, Am(κ), Bm(κ), Cm(κ) and Dm(κ) are determined by applying the

boundary conditions at the interface between region 1 and region 2.

In general, the zero order term

(
A0ρ

m +B0ρ
−m) [C0 sinh(kz) +D0 cosh(kz)] ,

should be included for a complete solution. For the nonconductive regions, we have the similar

solution to those in (6.9) and (6.10) with κ = υ, but the zero order term has the form

(
A0ρ

m +B0ρ
−m) (C0 +D0z) .

As we discussed in Chapter 2, the solution for an infinite region can be represented as an integral

over a continuous spectra [118]. Because of the truncation in the axial direction, however, the

solution W̃m(ρ, z) is expressed as a summation, rather than an integral, with u having discrete

values. With truncation conditions at boundaries z = 0 and z = h, the field solution within

0 ≤ z ≤ h is represented as a periodic function in the axial direction. The series expression is

equivalent to the Fourier series transform of this periodic function, as shown in Fig. 4.4.

The zero order term is needed if we impose the same conditions on these two boundaries.

However, it can be eliminated if two different truncation conditions are imposed on the bound-

aries. As before, we impose PEC condition at z = 0 and PMC condition at z = h. It follows

from the latter condition that the normal component of the magnetic flux density at the bound-

ary z = 0 is zero.
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We construct a formal solution for each homogeneous region first based on the general

solution given in (6.9). The superscript (0) and (1) represent the source field in the absence

of conductors and the field due to induced current, respectively. The total field in region 1

is the superposition of these two parts. For the region 2, ρ > b (0 ≤ z ≤ h), the fields

are denoted by the superscript (2). Continuity conditions are then applied to determine the

unknown expansion coefficients at the radial interface. Finally the results are obtained from

the prescribed source coefficient for a given coil.

The transformed TE and TM potentials that satisfy both the Helmholtz equation and the

truncation boundary conditions at z = 0 and z = h are formulated as follows. In region 1,

the transformed TE source potential outside the outer radial limit of the of the probe coil,

ρc < ρ ≤ b can be written as

ψ(0)
m (ρ, z) =

∞∑
i=1

Km(κiρ)

Km(κib)
cos(κiz)C

(0)
mi , (6.11)

where the normalizing factor Km(uib) is used to simplify the expressions for the matrix equa-

tions derived from the continuity properties of the field at the radial boundary ρ = b. The

coefficients, C
(0)
mi are prescribed for a given source coil current. The transformed TE potential

due to induced current has the form

ψ(1)
m (ρ, z) =

∞∑
i=1

Im(κiρ)

Im(κib)
cos(κiz)C

(1)
mi . (6.12)

The cosine function in (6.11) and (6.12) ensures that Bz = 0 at z = 0. Putting κi = (2i−1)π/2h,

i = 1, 2, . . . ensures that ψm = 0 and ∂ψm/∂ρ = 0 at z = h.

For region 2 (ρ ≥ b), the transformed TE potential can be written as

ψ(2)
m (ρ, z) =


∞∑
i=1

Km(υiρ)

Km(υib)

cos(αiz)

cos(αic)
C

(2)
mi , 0 ≤ z ≤ c

∞∑
i=1

Km(υiρ)

Km(υib)

sin[υi(h− z)]
sin[υi(h− c)]

C
(2)
mi , c ≤ z ≤ h

(6.13)

where the eigenvalues υi and αi satisfy

υ2
i = α2

i − k2. (6.14)

It is clear that (6.13) and (6.14) satisfy the truncation boundary conditions and the normalizing

factors containing c ensure the continuity of the tangential magnetic field at the interface z = c.
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Again, the factor Km(υib) is used to simplify the matrix equation. Applying the continuity of

the normal magnetic flux density, Bz, at z = c for region 2, from (6.13) we have that

cos[υi(h− c)]
sin[υi(h− c)]

=
υi sin(αic)

αi cos(αic)
. (6.15)

We can find the complex eigenvalues υi and αi by solving this complex transcendental equation

with (6.14). For a given ratio c/h, it is only necessary to compute these eigenvalues once since

the equation is independent of m. Discussions of the root finding algorithm will be given later.

The eigenvalues αi consist of two branches, Fig. 6.3. Because υi and αi are complex numbers,

the z dependence of the field in (6.13) becomes exponentially large when the eigenvalue αi

is increased with i. Factors containing c are used to normalize the sine or cosine functions,

which prevents numerical overflow and makes the coefficient matrix, which will be defined later,

well-conditioned.

The two branches of the eigenvalues in Fig. 6.3 represent two kinds of modes existing in the

truncated half space. This is similar to the modes supported by the shielded microstrip. As

shown in Fig. 6.4, the first type is related to the modes supported without the PMC truncation

boundary condition on the top. The wave in the air decays as the region goes to infinite far away

from the conductor. The second type is corresponding to the case where the PEC truncation

condition is removed and the field in the air oscillates due to the existence of the truncation

boundary at z = h. With this explanation, the initial guess of the eigenvalues qi can be started

from two limiting cases. We will discussion the details in Section 6.5.1.

For the conductive region, we also need Fourier transform of the TM potential and it can

be written as

ϕm(ρ, z) =
∞∑
i=1

Km(γiρ)

Km(γib)
cos(βiz)Dmi, 0 ≤ z ≤ c (6.16)

where γ2
i = β2

i − k2. Letting βi = (2i − 1)π/2c ensures that the normal component of the

current at the horizontal surface of the conductor, approached from within it, is zero. The zero

order term which corresponds to a transverse electric and magnetic (TEM) mode, must vanish

due to the continuity of Hφ at z = c (ρ ≥ b).

This completes the formal stage of the development and the continuity requirements at

the horizontal plane, z = c, are all satisfied. Each term in the formal solution represents a
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Figure 6.3: The spectrum of complex eigenvalues, αi for c = h/2 (o). The eigenvalues in two

extreme cases for a homogeneous domain with truncation length h/2 are also plotted (+). All

the values are normalized by multiplying the skin depth δ.

Figure 6.4: Two kinds of modes are supported in the truncated half space. They are corre-

sponding to the two branches of the eigenvalues in Fig. 6.3.
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mode supported in the corresponding region. To find the expansion coefficients, C
(1)
mi , C

(2)
mi and

Dmi, we impose the appropriate continuity conditions that govern the fields at the radial ρ = b

between region 1 and region 2 as follows.

6.2.2 Continuity at the Radial Interface

In order to set up the matrix equation to solve the expansion coefficients, we approximate

above infinite series as a summation over finite number of terms, Ni. The source coefficients,

C
(0)
mi , which can be derived from the expansion of the coil field in the nonconductive region, will

be given later. Because the modes are different in each region, the continuity of the tangential

magnetic field and the normal component of the magnetic flux density are applied in the weak

sense for the cylindrical boundary ρ = b extending from z = 0 to z = h. Matrix equations

for the three sets of unknown coefficients are found by matching Hz sin(κiz), Hφ cos(κiz),

and Bρ cos(κiz) at the boundary ρ = b, integrated between 0 and h. Applying trigonometric

function orthogonality relations,∫ h

0
sin(κjz) sin(κiz) dz =

h

2
δij , (6.17)

and ∫ h

0
cos(κjz) cos(κiz) dz =

h

2
δij , (6.18)

we obtain the following matrix equations

κ
[
C(0)
m + C(1)

m

]
= MsυC(2)

m , (6.19)

ım
[
C(0)
m + C(1)

m

]
= ımMcC

(2)
m −MrMm(γb)Dm, (6.20)

Mm(κb)C(0)
m + Λm(κb)C(1)

m = McMm(υb)C(2)
m + ımMrDm. (6.21)

where functions Λm(z) and Mm(z) are defined in (4.51). The bold symbols C
(0)
m , C

(1)
m , and

C
(2)
m are column vectors of expansion coefficients, whereas u, υ, γ, Mm(κb), etc. are Ni ×Ni

diagonal matrices. Other matrices in (6.19)-(6.21), Ms, Mc and Mr, have elements defined by

Ms[i, j] =
2

h

[∫ c

0

υj sin(αjz)

αj cos(αjc)
sin(κiz) dz +

∫ h

c

cos[υj(h− z)]
sin[υj(h− c)]

sin(κiz) dz

]
, (6.22)
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Mc[i, j] =
2

h

[∫ c

0

cos(αjz)

cos(αjc)
cos(κiz) dz +

∫ h

c

sin[υj(h− z)]
sin[υj(h− c)]

cos(κiz) dz

]
, (6.23)

Mr[i, j] =
2

h

∫ c

0
cos(κiz) cos(βjz) dz. (6.24)

Evaluating the integrals with the relationship (6.15) leads to the results as

Ms[i, j] =
2k2υj

h(κ2
i − α2

j )(κ
2
i − υ2

j )

{
sin(κic)−

κi sin(αjc)

αj cos(αjc)
cos(κic)

}
, (6.25)

Mc[i, j] =
2k2κi

h(κ2
i − α2

j )(κ
2
i − υ2

j )

{
sin(κic)−

κi sin(αjc)

αj cos(αjc)
cos(κic)

}
, (6.26)

and

Mr[i, j] =
c

h
{sinc [(κi + βj)c] + sinc [(κi − βj)c]} , (6.27)

where the sinc function is defined as

sinc(x) =
sin(x)

x
. (6.28)

From (6.25) and (6.26), we know that matrix Ms has a similar structure as Mc.

We can solve for the expansion coefficients, C
(1)
mi , C

(2)
mi and Dmi, using the matrix equations

(6.19)–(6.21) for a given source coefficient C
(0)
mi . However, because the matrix equations tend

to be potentially ill-conditioned in our method, special procedure is adopted to get a stable

solution. The discussion will be given in Section 6.4.

6.2.3 Impedance Change near a Borehole Opening

It has been shown, using reciprocity theorem, that coil impedance change due to an induced

current can be calculated using an integral over a surface enclosing the coil [82]. Taking the

surface to be a cylinder with radius b and expressing the integrand in terms of magnetic scalar

potentials gives

∆Z =
ıω

µ0I2

h∫
0

π∫
−π

[
ψ(1)∂ψ

(0)

∂ρ
− ψ(0)∂ψ

(1)

∂ρ

]
ρ=b

b dφ dz. (6.29)
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By substituting for ψ(0) and ψ(1) from (6.11) and (6.12) into (6.29) and using the Wronskian

I ′m(z)Km(z)− Im(z)K ′m(z) =
1

z
, (6.30)

we get the general expression for the impedance change of a coil in a borehole and a truncated

domain

∆Z =
ıωπh

µ0I2

∞∑
m=−∞

∞∑
i=1

C
(0)
miC

(1)
mi

Im(κib)Km(κib)
, (6.31)

where C
(0)
mi is given by (D.11) for the case of a rotary coil and (D.14) for the case of an bobbin coil

except it should have an extra factor Km(κib) included. The coefficients, C
(1)
mi , are determined

from (6.19)-(6.21).

The differential bobbin coil consists of two separate bobbin coils with opposite current

excitation is also considered here, Fig. 6.5. The source coefficients for the differential bobbin

coil can be constructed using the addition theorem. Assuming the coils have the same size and

the separation between these two coils is d0, the source coefficients for this differential bobbin

coil can be expressed as

z0

h

c

b

`

d0

r0

r1

r2

z

PEC

PMC

Figure 6.5: A differential bobbin coil at the opening of a borehole in a conductor.
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C
(0)
mi = C

(10)
mi − C

(20)
mi

=
8µ0νI

hκ3
i

Φ(κir2, κir1)Km(κib)Im(κir0) sin

(
κi`

2

)
sin

(
κid0

2

)
cos(κiz

d
0 ). (6.32)

Here, zd
0 is the axial position of the probe center. Coefficients, C

(10)
mi and C

(20)
mi , represent the

source coefficients for each coil. This completes the determination of the source coefficients for

a differential bobbin coil.

The impedance change of a differential coil can be written as

∆Z =
ıωπh

µ0I2

∞∑
m=−∞

∞∑
i=1

[
C

(10)
mi − C

(20)
mi

] [
C

(11)
mi + C

(21)
mi

]
Im(κib)Km(κib)

, (6.33)

where C
(11)
mi is the reflection coefficients due to one of the coils and C

(12)
mi due to another one.

From reciprocity theorem, we know that

C
(10)
mi C

(21)
mi = C

(20)
mi C

(11)
mi . (6.34)

By substituting it into (6.33), we have

∆Z =
ıωπh

µ0I2

∞∑
m=−∞

∞∑
i=1

C
(10)
mi C

(11)
mi − C

(20)
mi C

(21)
mi

Im(κib)Km(κib)

= ∆Z(1) −∆Z(2). (6.35)

Therefore, the impedance change of a differential probe can also be easily obtained from the

results of a single coil by subtracting the impedance change at one position from the one at

another position and the distance between these two positions is d0. These two methods are

equivalent to each other.

6.3 Incident Field Calculation

As mentioned before, we need to compute the eddy current density inside the conductor

as the incident field for the crack modeling with volume element method. Once the expansion

coefficients are calculated, Fourier transform of the electric field in conductive region ( 0 ≤ z ≤ c
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and ρ ≥ b) can be calculated as from (6.2)

Ẽρm(ρ, z) = ıω

(
ım

ρ
W̃am +

∂2W̃bm

∂ρ∂z

)
, (6.36)

Ẽφm(ρ, z) = ıω

(
−∂W̃am

∂ρ
+
ım

ρ

∂W̃bm

∂z

)
, (6.37)

Ẽzm(ρ, z) = ıω

(
∂2

∂z2
+ k2

)
W̃bm. (6.38)

Eddy current in the conductor is given by J = σE and, therefore, the expression for each

component is given by

J̃ρm(ρ, z) = −ωσ
∞∑
i=1

m

ρ

Km(υiρ)

Km(υib)

sin(αiz)

αi cos(αic)
C

(2)
mi +

ı

k2

K ′m(γiρ)

Km(γib)
βiγi sin(βiz)Dmi, (6.39)

J̃φm(ρ, z) = −ıωσ
∞∑
i=1

K ′m(υiρ)

Km(υib)

υi sin(αiz)

αi cos(αic)
C

(2)
mi +

ım

ρk2

Km(γiρ)

Km(γib)
βi sin(βiz)Dmi, (6.40)

J̃zm(ρ, z) = − 1

µ0

∞∑
i=1

Km(γiρ)

Km(γib)
γ2
i sin(βiz)Dmi. (6.41)

The expansion coefficients, C
(2)
mi and Dmi, are calculated from (6.19)-(6.21).

6.4 Discussion on the Ill-Conditioned Matrices

One of the improvements in the current method is that we introduced the normalizing

factor, cos(αic) for 0 ≤ z ≤ c and sin[υi(h − c)] for c ≤ z ≤ h in (6.13). Without these

normalizing factors, the matrices Ms and Mc have a large condition number. For example,

in the case we will present later, the order of magnitude of these condition numbers is around

1020. The inverse of these matrices is required to solve the matrix equations. This might cause

an inaccuracy of the final results [120]. We can reduce these large condition numbers into 103

with the normalizing factors in (6.13).

In general, we choose a relatively large truncation range h and make c = h/2 so that the

truncation boundaries have slight influence on the final results. However, there is a numerical

issue associated with these parameter choices when we try to solve the matrix equations (6.19)-

(6.21). Unlike Ms and Mc, matrix Mr still has an extremely large condition number even after

normalizing factor is introduced. Here, Mr is only related to Dm. It is not stable to solve Dm
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directly from this ill-conditioned matrix system, although we could obtain correct solutions for

C
(1)
m and C

(2)
m by solving (6.19)-(6.21). Therefore, it is sufficient to get the impedance change

from above solution, but it fails for the incident field calculation in which the coefficient Dm is

needed.

By relating the TE and TM modes in the conductive region, we utilize another boundary

condition at the borehole surface to overcome this ill-conditioned problem. We can find the

relationship between expansion coefficients C
(2)
m and Dm based on the boundary condition that

normal component of eddy current inside the conductor should be zero at the borehole interface

ρ = b for 0 ≤ z ≤ c. We obtain a different matrix equation by integrating Eρ sin(βiz) between

0 and c at the boundary ρ = b. By applying∫ c

0
sin(βjz) sin(βiz) dz =

c

2
δij , (6.42)

we get the matrix equation

ıβMm(γb)Dm = −mk2MtC
(2)
m , (6.43)

where the elements of matrix Mt is defined as

Mt[i, j] =
2

c

∫ c

0

cos(αjz)

cos(αjc)
cos(βiz) dz. (6.44)

Once C
(2)
m is solved, Dm can be easily obtained from (6.43) without inversing any ill-conditioned

matrix. Substituting all the coefficients into (6.39)–(6.41), we can obtain the incident field

accurately.

6.5 Numerical Algorithm for Complex Eigenvalue Calculation

6.5.1 Complex Eigenvalues

In order to ensure that numerical results are accurate, a reliable method for computing

complex eigenvalues satisfying (6.15) is needed [121]. Some of the algorithms which work well

for the real root search might not be suitable here. However, there are still several ways to

calculate the eigenvalues numerically for a complex equation like f(z) = 0.
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The first one is to extend the bisection method to the complex roots. For an equation

defined on the real domain, a zero is located in an interval, in which the function has opposite

signs at the two ends. For a complex function f(z), the phase of the function can be considered

and the cross point of four quadrants should be the zero point, Fig. 6.6. The other way is

to calculate the reciprocal of f(z) and observe the magnitude of function 1/f(z). The point

with infinite large value is the zero location. Applying these two methods to our eigenvalue

problem, Fig. 6.7 shows the order of magnitude of function 1/|f(z)| and the phase plot of f(z).

These two methods can be used to find the root through visualization. To get the accurate

eigenvalues, we have to resort to other methods.

6.5.2 Newton-Raphson Method

Most of the root search method requires the initial values. As discussion in Section 6.2.1,

we can get a good initial guess by considering two limiting cases depending on the value of c.

One is from the eigenvalues satisfying if cos[υi(h − c)] = 0 and another one is the eigenvalues

from cos(αic) = 0. The limiting cases generate two sets of eigenvalues, in one set the values are

real and positive and the other set starts close to k on the complex plane and tends toward

−1 −0.5 0 0.5 1
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Figure 6.6: The phase of the function f(z) = z on the complex plane. The phase of a complex

function can be used to search the root of corresponding equation.
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Figure 6.7: The order of magnitude of the function 1/|f(z)| (a) and the phase of function f(z)

(b) for the eigenvalue problem discussed in this chapter.
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κi, Fig. 6.3. At intermediate values of c one gets a hybridization of the two sets in which

one set is dominant depending on whether c is large or small. With these initial guess, the

Newton-Raphson method can be applied to our problem. Newton-Raphson method does not

require the derivative of the function, which makes the method much easier to apply.

6.5.3 Lyness Algorithm

Another robust method for locating initial estimate of the qi is one based on a procedure

given by Delves and Lyness [122]. The method has been applied to the eigenvalue calculation

for the eddy-current interaction with a right-angle conductive wedge [31]. The key step uses

Cauchy’s theorem to test whether a pole or several poles of a given function lies in a prescribed

region of the complex plane. By finding the poles of a function, we could implicitly locate the

reciprocal of zeros. Thus if C is a closed contour in the complex plane which dose not pass

through a zero of f(z), using Cauchy’s theorem, we can have that

σn =
1

2πı

∮
C
zn
f ′(z)

f(z)
dz =

N∑
i=1

νni , n = 1, 2, . . . , N (6.45)

where f(z) is an analytic function inside and on the contour C enclosing region R and the

summation is over the enclosed poles. In addition, νni are the zeros of f(z) in R raised to the

n-th power. The path integral, evaluated for n = 0 gives the number of zeros of f(z) enclosed

by contour C

σ0 =
1

2πı

∮
C

f ′(z)

f(z)
dz =

N∑
i=1

ν0
i = N. (6.46)

A numerical integration inevitably gives rise to errors but we only need compute with sufficient

accuracy to identify unambiguously the integer N . It is best to work with at most a few poles

in each region, say three or fewer, and if N exceeds the chosen limit, we can simple shrink the

region R to capture fewer poles. One strategy that may be adapted is to choose a region of

integration small enough that there is only one pole in it. Then it is easy to locate it accurately.

If there are several poles in R and the number of poles N can be obtained from σ0, we

only need to calculate σ1, σ2, . . . , σN to locate them by constructing the N -th order polynomial

P (z) [123]. For example, if N = 1 we have

P (z) = z − σ1,
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with a root ν1, whereas if N = 2 we have

P (z) = z2 − σ1z +
σ2

1 − σ2

2
,

with roots ν1 and ν2. One can find the roots of higher order polynomials via a number of

available techniques but they tend to decrease in efficiency and accuracy as N increases. The

polynomial P (z) does not approximate the function f(z), it simply has the same roots as the

function in R. Hence, we actually replace the problem of finding the zeros for a given analytic

function f(z) in region R with the one of finding the zeros of a given polynomial P (z) in the

same region. The above method allows us to find several roots simultaneously, thus avoiding

the need to isolate zeros which may be difficult when they are close together or tightly grouped

in the complex plane.

For borehole edge, all the eigenvalues are located in the area between the dashed horizontal

line and the real axis in Fig. 6.3, we employ the above scheme and search the area by dividing

it into subareas with a trapezoidal or rectangular shape as appropriate. In each subarea we

calculate the complex roots by computing the repeated integrals of (6.45) along its bounding

path. The procedure continues up to a certain maximum <{αi} or when the maximum set

number of eigenvalues has been reached. The path integrals need not be computed with great

accuracy since they are used to computed initial estimates of the zeros prior to refinement using

the Newton-Raphson routine.

6.6 Results

6.6.1 Coil Impedance Change at Borehole Opening

We compute both coil impedance change and incident fields using MATLAB for a rotary coil

near the borehole edge. The parameters are listed in Table 6.1. Similar truncation criterion for

h and Ni is used to ensure the accuracy of the results. Usually 60 terms in the series expansion

are used in both orders and modes. The variation of normalized impedance change of a rotary

coil as a function of axial position at a fixed frequency f = 10 kHz is shown in Fig. 6.8. The

normalizing factor is the isolated coil reactance X0 = ωL0, where the self-inductance L0 is
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Table 6.1: Coil and borehole parameters for a coil around the opening of a borehole. The

configurations are shown in Fig. 6.2 for a rotary coil and Fig. 6.5 for a differential bobbin coil,

respectively.

Coil

Inner radius (r1) 6.95 mm

Outer radius (r2) 9.35 mm

Length (`) 6.70 mm

Number of turns (N) 335

Lift-off for rotary coil (b− x2) 7.67 mm

Offset for bobbin coil (r0) 4.1 mm

Test Specimen

Borehole radius (b) 20 mm

Conductivity (σ) 24.36 MS/m

Relative permeability (µr) 1

Other Parameters

Frequency (f) 10 kHz

Skin depth at 10 kHz (δ) 1.02 mm

Isolated coil induction (L0) 1.745 mH

1.754 mH. The prediction shows a good agreement with the experimental measurement as

before. The measurements were conducted by Rob Ditchburn of DSTO, Melbourne, Australia.

The impedance change of an offset bobbin coil and a differential probe near the borehole

edge are also computed. In order to check our theory, we compared the prediction with the

measurements done by Ditchburn. The variation of normalized impedance change as a function

of axial position at f = 10 kHz is shown in Fig. 6.9. The coil parameters are listed in Table 6.1.

Based on the results for a single bobbin coil, the impedance change of a differential probe

with coil separation d0 = 10 mm is calculated at four different frequencies as the probe scans

along the axial direction, Fig. 6.10. The differential signal goes to zero when the differential

coil far away from the borehole edge or at the depth of the borehole. For a fixed frequency,

the impedance change varies dramatically when the coil is near the borehole edge. At low

frequency with large skin depth the impedance changes slowly as the coil is moved along the

axial direction, while the coil impedance varies faster at high frequency. The same results could

be obtained using both of the approaches mentioned in Section 6.2.3.
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Figure 6.8: Coil resistance change (a) and reactance change (b) of a rotary coil as a function

of the axial position. The experiments were conducted at 10 kHz.
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Figure 6.9: Variation of the normalized resistance change (a) and reactance change (b) of an

bobbin coil as a function of the axial position with respect to the edge of the borehole opening

at a fixed frequency 10 kHz.
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Figure 6.10: Normalized impedance plane plot for a differential probe around the edge of

borehole at four different frequencies, 1 kHz, 5 kHz, 10 kHz, and 20 kHz.

6.6.2 Current Distribution around a Borehole Edge

Eddy current distribution inside the conductor is presented in Figs. 6.11 and 6.12. Fig-

ure 6.12 shows the azimuthal component of eddy-current density for three coils positions on

the plane φ = 0◦: 9.35 mm, 0 mm, and −9.35 mm. The operating frequency is 500 Hz. The

result shows how the eddy-current distribution changes and the amplitude decreases as the coil

moves away from the edge. In order to verify the boundary conditions, Fig. 6.11 is used to show

the radial, and axial components of the eddy current density at the plane φ = 0◦ for the coil

position z0 = c with f = 500 Hz. Apparently, the normal component of the current is getting

to zero as the point approaches to the conductor boundary for both z = c and ρ = b surface,

respectively.

The computation time for each coil position is only a few seconds and it could be further

reduced by using more efficient functions to evaluate the source coefficients, C
(0)
m for the rotary

coil.
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Figure 6.11: Amplitude contours of azimuthal component of eddy-current density for three coil

positions at the φ = 0◦ plane: 9.35 mm (a), 0 mm (b), and −9.35 mm (c). The numbers in each

graph show the maximum amplitude. The frequency is 500 Hz.
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Figure 6.12: Amplitude contours of radial (a) and axial (b) component of eddy-current density

at the φ = 0◦ plane. The coil located is at the edge of the conductor. The numbers in each

graph show the maximum amplitude. The frequency is 500 Hz.

6.7 Summary

The interaction of a coil with the opening of a borehole is formulated using TREE method.

To get a stable solution for the current fields, the problem is reformulated with an improved

closed-form expression so that the final matrix equations have a small condition number. The

zero order term is eliminated by adopting different truncation boundary conditions. We inves-

tigate the matrix property of the matrix equations in our method to make sure the correction

of the final results.

Numerical algorithms are discussed for the calculation of the complex eigenvalues used in

the formulation. The impedance change due to a rotary coil and a bobbin coil is computed

and the results are compared with experimental measurements. Good agreement is obtained.

The current distribution is plotted to verify the boundary conditions. The eddy-current fields

calculated in this chapter can be used as the incident field in the corresponding crack problem.

The fields are also can be used as the incident field for the thin skin theory, a different method
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which is potentially efficient for the crack calculation.
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CHAPTER 7. COIL IMPEDANCE CHANGE DUE TO CORNER

CRACKS

The impedance change of an induction coil due to cracks around the opening of a borehole

is formulated in this chapter. The basic crack model is the same as that demonstrated in

Chapter 4. The current field calculated from Chapter 6 can be used as the incident field for

this crack problem. In boerhole model, the configuration is homogeneous in the axial direction

and the situation is different for this problem, in which the medium becomes inhomogeneous

in the axial direction and eigenvalues don’t have simple forms. In order to derive the Green’s

function for a point source around the opening of a borehole, we combine the crack model

presented in Chapter 4 and the approach developed in Chapter 6. The reflection coefficients

have to be modified to take care the wave interaction with two surfaces which intersect with

each other. In our method, this is an important step for the coil signal estimation of the

fastener inspection. The theoretical model is developed, even though we have not completed

the program so far. Here, we present the derivation of the Green’s function used in the volume

integral method. The associated difficulties of the problem are discussed at the end.

7.1 Introduction

The coil impedance change due to a crack around the opening of a borehole is considered,

Fig. 7.1. A longitudinal crack lies near the borehole open end. The conductor has the perme-

ability of free space, µ0 and the conductivity, σ0. A coil, which carries a current varying as

the real part of Ie−ıωt, introduces the alternating magnetic field into the cracked conductor.

The incident field calculation is provided in the last chapter. For this configuration, the crack

model is the same as before and we only derive the Green’s kernel used in the volume element
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Figure 7.1: A rotary pancake coil is used to inspect a crack near the opening of a borehole.

method for a point source around the boerhole opening.

We have presented the use of scalar decomposition for crack problems in Chapter 4 and the

same formulation is used here. For convenience, the time factor exp(−ıωt) is suppressed and

the fields and potential variables are all expressed in terms of the Fourier series

W (ρ, φ, z) =
∞∑

m=−∞
W̃m(ρ, z) eımφ. (7.1)

For the source free region, the magnetic field has a scalar representation like

H = ∇×∇× (ẑWa) + k2∇× (ẑWb), (7.2)

and the electric field can be expressed as

E = ıωµ[∇× (ẑWa) +∇×∇× (ẑWb)], (7.3)

where k2 = ıωµσ0. From (7.2), the Fourier transform of the magnetic fields is given by

H̃ρm =
∂2W̃am

∂ρ∂z
+ k2 ım

ρ
W̃bm, (7.4)

H̃φm =
ım

ρ

∂W̃am

∂z
− k2∂W̃bm

∂ρ
, (7.5)

H̃zm =

(
∂2

∂z2
+ k2

)
W̃am, (7.6)



www.manaraa.com

120

and, from (7.3), Fourier transform of the electric fields has the form

Ẽρm = ıωµ

(
ım

ρ
W̃am +

∂2W̃bm

∂ρ∂z

)
, (7.7)

Ẽφm = −ıωµ

(
∂W̃am

∂ρ
− ım

ρ

∂W̃bm

∂z

)
, (7.8)

Ẽzm = ıωµ

(
∂2

∂z2
+ k2

)
W̃bm. (7.9)

The Green’s function, which satisfies

(
∇2 + k2

) Gaa Gab

Gba Gbb

 = −

 1 0

0 1

 δ(r− r′), (7.10)

is needed in the volume integral calculation. The related functions Uij(r|r′) is defined as

Gij(r|r′) = −∇2
tUij(r|r′) i, j = a, b (7.11)

In order to derive the dyadic Green’s kernel used in (4.29), the scalar Green’s function is

determined first. The TREE method is applied in the axial direction as before and the same

truncation boundary conditions are imposed at z = 0 and z = h, as listed in Table 4.2.

For a homogeneous truncated domain, the scalar Green’s functions are given in (4.35) and

(4.36). The Green’s functions for a dipole point source in a truncated borehole are developed

in (4.40) by considering the coupling of TE and TM modes due to the borehole interface. Here,

we continue our discussion from the scalar Green’s function for a current dipole point source

in a half-space conductor.

7.2 Scalar Green’s Function for a Half Space

Let’s consider a point source inside a half-space conductor. The domain is truncated at with

PEC condition at z = 0 and PMC condition at z = h. The interface between the conductor and

free space is located at z = c, Fig. 7.2. In this problem, TE and TM modes are independent

to each other. With axial truncation, the method introduced in Chapter 6 are used here to

satisfy the continuity of the fields at the interface, z = c.
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Figure 7.2: A point source in a truncated half space.

Thus, the Green’s function corresponding to the TE mode can be written as

G(H)
a =

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

G̃0(ρ, ρ′, υi) sin(αiz
′)


sin(αiz)Ami 0 ≤ z ≤ c

cos[υi(h− z)]Amiξi c ≤ z ≤ h
(7.12)

where Ami and ξi are the coefficients to be determined and αi and υi satisfy

υ2
i = α2

i − k2. (7.13)

The eigenvalues, υi and αi, are determined by applying boundary conditions at the interface

z = c. The continuity of Bz at z = c gives

sin(αic) = ξi cos[υi(h− c)], (7.14)

and the continuity of Hφ at z = c implies

αi cos(αic) = ξiυi sin[υi(h− c)]. (7.15)

Combining (7.13)–(7.15), the eigenvalues, αi, are found by solving this complex transcendental

equation

υi sin[υi(h− c)] sin(αic)− αi cos[υi(h− c)] cos(αic) = 0. (7.16)
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This equation is similar to that in (6.15) and the same numerical methods mentioned in Sec-

tion 6.5 can be used to solve the equation. Once the eigenvalues are calculated, ξi can be

determined from (7.14) or (7.15).

The coefficients in (7.12) are found by using a set of functions for the half space defined as

ψ`(z) =


sin(p`z) 0 ≤ z ≤ c

ξ` cos[q`(h− z)]/
√
µr c ≤ z ≤ h

(7.17)

and these functions have the orthogonal property∫ h

0
ψi(z)ψj(z) dz =

hi
2
δij , (7.18)

where

hi = c+
ξ2
i

µr
(h− c) +

k2

2

sin(2αic)

αiq2
i

. (7.19)

Substituting (7.12) into (7.10), applying the orthogonality proper of eımφ and (7.18), we can

show that

G(H)
a =

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

1

πhi
Im(υiρ<)Km(υiρ>) sin(αiz

′)


sin(αiz) 0 ≤ z ≤ c

ξi cos[υi(h− z)] c ≤ z ≤ h
(7.20)

Compared with the scalar Green’s function for the homogeneous domain, the TM Green’s

kernel for a half space (0 < z < c) takes the form

G
(H)
b =

1

πc

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

Im(γiρ<)Km(γiρ>) cos(βiz) cos(βiz
′), (7.21)

where γ2
i = β2

i − k2 and βi = (2i− 1)π/2c.

Equations (7.20) and (7.21) give the scalar Green’s function for a point source in the half

space. To derive the Green’s kernel for the Borehole opening, these two functions are modified

by adding the effect of fields migration from an interface at ρ = b.

7.3 Point Source around the Opening of a Borehole

In borehole model, reflection terms are introduced to the homogeneous Green’s kernel to

represent the field migration from the cylindrical interface and the TE and TM modes are
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coupled due to the continuity of the fields at the interface. However, the eigenmodes, due to

the truncation in the axial direction, are independent to each other. For the borehole opening,

the modes represented by eigenvalues, υi in the half-space solution are also coupled due to the

boundary conditions at these two intersecting surfaces.

By introducing the coupling between the modes supported by the truncated half space, the

scalar Green’s function for a point source near the opening of a borehole can be derived in the

similar procedure as that from homogeneous unbounded domain to the borehole structure.

Consider a point source in the conductor is located outside of the cylindrical plane ρ = ρs,

Fig. 7.3. The continuity conditions at the plane z = c are satisfied by matching the fields for

the half space. The fields inside the borehole are matched with the fields outside the borehole

at ρ = b. Fourier transform of the TE potential inside the borehole (ρ < b) can be expressed

as

W̃ (1)
am =

∞∑
i=1

Im(κiρ)

Im(κib)
sin(κiz)C

(1)
mi . (7.22)

The Fourier transform of the TM potential for the same region, inside the borehole, can be

h

c
b

O

z

12

P

PEC

PMC

Figure 7.3: A point source around the opening of a borehole. The domain is truncated in the

axial direction.
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written as

W̃
(1)
bm =

∞∑
i=1

Im(κiρ)

Im(κib)
cos(κiz)D

(1)
mi . (7.23)

For the region b < ρ < ρs, the TE potential has the form

W̃ (2)
am =

∞∑
i=1

[
Im(υiρ)

Im(υib)
C

(H)
mi +

Km(υiρ)

Km(υib)
C

(2)
mi

]
sin(αiz) 0 < z < c

ξi cos[υi(h− z)] c < z < h

(7.24)

and the TM potential for the conductive region (b < ρ < ρs and 0 < z < c) can be written as

W̃
(2)
bm =

∞∑
i=1

[
Im(γiρ)

Im(γib)
D

(H)
mi +

Km(γiρ)

Km(γib)
D

(2)
mi

]
cos(βiz). (7.25)

where the coefficients, C
(H)
mi and D

(H)
mi , are determined by the solution in the half-space problem

for a given source.

The unknown coefficients in (7.22)–(7.25), C
(1)
mi , C

(2)
mi D

(1)
mi , and D

(2)
mi , can be found by

enforcing the continuity of tangential magnetic fields and normal magnetic flux across the

cylindrical interface ρ = b. For a specific order m, the TE and TM modes are coupled with

each other and so do the modes represented by the eigenvalues. Therefore, for the given source

coefficients, other coefficients can be expressed in the form C
(1)
mi

D
(1)
mi

 =
∞∑
`=1

 T
(aa)
mi` T

(ab)
mi`

T
(ba)
mi` T

(bb)
mi`


 C

(H)
m`

D
(H)
m`

 , (7.26)

and  C
(2)
mi

D
(2)
mi

 =
∞∑
`=1

 Γ
(aa)
mi` Γ

(ab)
mi`

Γ
(ba)
mi` Γ

(bb)
mi`


 C

(H)
m`

D
(H)
m`

 , (7.27)

for each order m. Here the matrix multiplication represents the coupling between TE and

TM fields and the summation represents the eigenmode coupling. Identifying W̃m(r|r′) with

Ũm(r|r′), the source coefficients can be obtained from the corresponding Green’s function, G̃(H).

The source coefficients in (7.26) and (7.27) are found from (7.20) and (7.21) as

C
(H)
m` = −sin(α`z

′)

πh`υ
2
i

Im(υ`b)Km(υ`ρ
′), (7.28)

and

D
(H)
m` = −cos(β`z

′)

πcγ2
i

Im(γ`b)Km(γ`ρ
′). (7.29)
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In order to construct the Green’s kernel for an internal source, only C
(2)
mi and D

(2)
mi are

needed and the (7.27) can be expressed as C
(2)
m

D
(2)
m

 =

 Γ
(aa)
m Γ

(ab)
m

Γ
(ba)
m Γ

(bb)
m


 C

(H)
m

D
(H)
m

 , (7.30)

where C
(2)
m , D

(2)
m etc. are column vectors with length Ni and Γ

(aa)
m etc. are Ni × Ni matrices,

or as  C
(2)
mi

D
(2)
mi

 =

 Γ
(aa)
mi ·C

(H)
m + Γ

(ab)
mi ·D

(H)
m

Γ
(ba)
mi ·C

(H)
m + Γ

(bb)
mi ·D

(H)
m

 , (7.31)

where Γ
(aa)
mi is the i-th row of Γ

(aa)
m . Here, We have truncated all the infinite summation into

Ni terms.

We construct an expression for Uaa(r|r′) by identifying it with Wa in (7.24) for the case

where the C
(2)
mi arise from a TE source only as represented by the coefficients C

(H)
mi . For Uab(r|r′),

Uba(r|r′), and Ubb(r|r′), we proceed in the similar way. Thus in the form of (7.24) and (7.25)

we write

Uaa(r|r′) =
∞∑

m=−∞
eım(φ−φ′)

∞∑
i=1

sin(αiz)

[
Im(υiρ)

Im(υib)
C

(H)
mi +

Km(υiρ)

Km(υib)
Γ

(aa)
mi ·C

(H)
m

]
, (7.32)

Uab(r|r′) =

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

sin(αiz)
Km(υiρ)

Km(υib)
Γ

(ab)
mi ·D

(H)
m , (7.33)

Uba(r|r′) =
∞∑

m=−∞
eım(φ−φ′)

∞∑
i=1

cos(βiz)
Km(γiρ)

Km(γib)
Γ

(ba)
mi ·C

(H)
m , (7.34)

Ubb(r|r′) =

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

cos(βiz)

[
Im(γiρ)

Im(γib)
D

(H)
mi +

Km(γiρ)

Km(γib)
Γ

(bb)
mi ·D

(H)
m

]
, (7.35)

for the conductive region.

The first term in (7.32) and (7.35) occurs in the half-space solution and can be separated

from the additional terms that arise in the quarter space solution as follows[
Uaa Uab

Uba Ubb

]
=

 U
(H)
a 0

0 U
(H)
b

+

[
Uaa Uab

U ba U bb

]
, (7.36)

for r 6= r′. For example, the TE potential due to a TM source in (7.33) can be written as

Uab = Uab = − 1

πc

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

Km(υiρ)

γ2
iKm(υib)

sin(αiz)
∞∑
`=1

Γ
(ab)
mi`Im(γ`b)Km(γ`ρ

′) cos(β`z
′).

(7.37)
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The coefficients in the forgoing expansions are determined using the interface conditions at

the surface ρ = b to ensure the continuity of tangential magnetic fields and the continuity of

normal magnetic flux. The following integrals are applied to the fields in region 1 and 2

1

hπ

∫ 2π

0
e−ımφ

∫ h

0
sin(κiz)Hz dφ dz,

1

hπ

∫ 2π

0
e−ımφ

∫ h

0
cos(κiz)Hφ dφ dz,

1

hπ

∫ 2π

0
e−ımφ

∫ h

0
cos(κiz)Bρ dφ dz,

at ρ = b. These conditions, applied in the weak sense, give respectively

κ2C(1)
m = Mpυ

2
[
C(H)
m + C(2)

m

]
, (7.38)

ımκC(1)
m = ımκMp

[
C(H)
m + C(2)

m

]
− k2Mr

[
Λm(γb)D(H)

m + Mm(γb)D(2)
m

]
, (7.39)

κΛm(κb)C(1)
m = κMp

[
Λm(υb)C(H)

m + Mm(υb)C(2)
m

]
+ ımk2Mr

[
D(H)
m + D(2)

m

]
, (7.40)

where the coefficient matrices, such as κ and Λm(κb), are diagonal matrices, and matrices Mp

and Mr are defined as follows

Mp[i, j] =
2

h

[∫ c

0
sin(αjz) sin(κiz) dz + ξj

∫ h

c
cos[υj(h− z)] sin(κiz) dz

]
, (7.41)

and

Mr[i, j] =
2

h

∫ c

0
cos(κjz) cos(βiz) dz. (7.42)

Thus, the matrix element Mp is given by

Mp[i, j] =
2k2

h(κ2
i − α2

j )(κ
2
i − υ2

j )
{αj cos(αjc) sin(κic)− κi sin(αjc) cos(κic)} , (7.43)

and Mr is the same as that in (6.27) .

Eliminate C
(1)
m in (7.38)–(7.40) gives

ım [A1 −A2]
[
C(H)
m + C(2)

m

]
= −K

[
Λm(γb)D(H)

m + Mm(γb)D(2)
m

]
, (7.44)

Λm(κb)A1

[
C(H)
m + C(2)

m

]
−A2

[
Λm(υb)C(H)

m + Mm(υb)C(2)
m

]
= ımK

[
D(H)
m + D(2)

m

]
. (7.45)

Here, we have defined

A1 = Mpυ
2, A2 = κ2Mp, and K = k2κMr. (7.46)
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Combining (7.44) and (7.45), we find{
KMm(γb)K−1[Λm(κb)A1 −A2Mm(υb)]−m2[A1 −A2]

}
[C(H)

m + C(2)
m ]

= KMm(γb)K−1A2[Λm(υb)−Mm(υb)]C(H)
m − ımK[Λm(γb)−Mm(γb)]D(H)

m , (7.47)

and {
m2K− [Λm(κb)A1 −A2Mm(υb)][A1 −A2]−1KMm(γb)

}
[D(H)

m + D(2)
m ]

= ımA2[Λm(υb)−Mm(υb)]C(H)
m

+ [Λm(κb)A1 −A2Mm(υb)][A1 −A2]−1K[Λm(γb)−Mm(γb)]D(H)
m . (7.48)

Finally, compared with (7.30), the reflection matrices Γ
(aa)
m and Γ

(ab)
m are obtained from (7.47)

for any order m. Similarly, Γ
(ba)
m and Γ

(bb)
m are obtained from (7.48).

For the solution of the zeroth order, m = 0, the TE and TM modes are decoupled and

(7.47) reduces to the following form

[Λ0(κb)A1 −A2M0(υb)]
[
C

(H)
0 + C

(2)
0

]
= A2[Λ0(υb)−M0(υb)]C

(H)
0 . (7.49)

Thus,

Γ
(aa)
0 = [Λ0(κb)A1 −A2M0(υb)]−1A2[Λ0(υb)−M0(υb)]− I. (7.50)

If c is approaching to h, then

αi = βi = κi, γ2
i = υ2

i = κ2 − k2,

and A1, A2, and K become diagonal matrices

A1 = γ2I, A2 = κ2, K = k2κ.

Equations (7.47) and (7.48) become{
m2k2 −Mm(γb)[κ2Mm(γb)− γ2Λm(κb)]

}
[C(H)

m + C(2)
m ]

= [Λ(γb)−Mm(γb)]
{
κ2Mm(γb)C(H)

m − ımk2κD(H)
m

}
,{

m2k2 −Mm(γb)[κ2Mm(γb)− γ2Λm(κb)]
}

[D(H)
m + D(2)

m ]

= [Λm(γb)−Mm(γb)]
{
ımκ2C(H)

m + [κ2Mm(γb)− γ2Λm(κb)]D(H)
m

}
.

These reflection matrices calculated from (7.47) and (7.48) agree with (4.53) in the borehole

model.
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7.4 Dyadic Green’s Function for a Longitudinal Crack

Like what we did in Section 4.5, operating φ̂ ·G (r|r′) · φ̂ on dyadic Green’s function defined

in (4.28), we get the dyadic Green’s kernel for a longitudinal crack near a borehole edge

G
(Γ)
φφ (r|r′) =

∂2Uaa

∂ρ∂ρ′
− 1

k2ρ′
∂3Uab

∂ρ∂φ′∂z′
− 1

ρ

∂3U ba

∂φ∂z∂ρ′
+

1

k2ρρ′
∂4U bb

∂φ∂z∂φ′∂z′
. (7.51)

and we can evaluate those terms in (7.51) using the decomposition given in (7.36) as

∂2Uaa

∂ρ∂ρ′
= − 1

π

∞∑
m=−∞

eım(φ−φ′)
∞∑
i=1

1

υi
sin(αiz)

K ′m(υiρ)

Km(υib)
Γ

(aa)
mi · Ũ

a
m, (7.52)

1

k2ρ′
∂3Uab

∂ρ∂φ′∂z′
= − ı

πck2ρ′

∞∑
m=−∞

meım(φ−φ′)
∞∑
i=1

υi
γ2
i

sin(αiz)
K ′m(υiρ)

Km(υib)
Γ

(ab)
mi · Ũ

b
m, (7.53)

1

ρ

∂3U ba

∂φ∂z∂ρ′
=

ı

πρ

∞∑
m=−∞

meım(φ−φ′)
∞∑
i=1

βi
υ2
i

sin(βiz)
Km(γiρ)

Km(γib)
Γ

(ba)
mi · Ũ

a
m, (7.54)

1

k2ρρ′
∂4U bb

∂φ∂z∂φ′∂z′
= − 1

πck2ρρ′

∞∑
m=−∞

m2eım(φ−φ′)
∞∑
i=1

βi
γ2
i

sin(βiz)
Km(γiρ)

Km(γib)
Γ

(bb)
mi · Ũ

b
m,(7.55)

where elements of Ũa
m and Ũb

m are given by

Ũam` =
υ`
h`
Im(υ`b)K

′
m(υ`ρ

′) sin(α`z
′), (7.56)

Ũ bm` = β`Im(γ`b)Km(γ`ρ
′) sin(β`z

′). (7.57)

By integrating the kernel in (7.51) over a crack cell, the reflection matrix element in the

volume integral equation can be calculated. The matrix element of half-space kernel is given

in Appendix C. This completes the derivation of the matrix elements used in our method to

evaluate the current dipole source over the crack region.

7.5 Discussion and Summary

A MATLAB code is written based on above crack model and some tests are under way.

The problem we currently have is the ill-conditioned matrix in (7.47) and (7.48). The reflection

matrix is calculated by inverting the matrix on the left-hand side of these two equations.

However, like what we stated in Chapter 6, these two matrices have large condition numbers and

the reflection matrix becomes inaccurate after we invert these matrices. One of the solutions is
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to construct the matrix equations by eliminating other unknown coefficients, not the coefficients

C
(1)
m . The investigation of the matrix properties is still in progress.

The reflection matrices are calculated for each order. Apparently, the summation in the

matrix element calculation has slow convergence due to the hyper-singularity around the bore-

hole edge. That means we need large number of orders and modes. Inverting the full matrix is

time-consuming. Therefore, we are also considering other methods with some approximations

to accelerate the computation speed, such as the thin skin theory.
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CHAPTER 8. CONCLUSION

In this dissertation, we have presented several EC problems solved in cylindrical polar co-

ordinates: cracks near an infinitely long borehole, longitudinal cracks in a tube, and impedance

change of coils around the opening of a borehole. The fields are expressed in terms of scalar

TE and TM potentials. To solve the crack problems, the crack is equivalent to a current dipole

source distributed over the crack region. Dyadic Green’s functions for a point source in these

structures are derived to construct an electric integral equation and the dipole density is solved

using the volume element method. The incident field associated with a given coil source can

be also derived using the similar approach. Finally, the coil signals are obtained based the

dipole density using the reciprocity theorem. The comparison between the results from the

crack model and the experimental measurements shows a good agreement for all the cases.

As discussed at the beginning of this dissertation, each problem has different physical mean-

ing and mathematical background. The methods and concepts are extended from simple models

to the complicated problems. With appropriate modification, this systematic approach could

be further applied to the other similar structures, such as cracks near holes in a plate. On the

other hand, the results for a complicated geometry can be verified by considering some special

cases in which the problem can be reduced to the simple structures, like what we did in the

tube and borehole models. The transient eddy current problems could be solved by applying

Laplace transformation with the spectrum approaches derived in this work.

The TREE method is applied to all the problems. Series expansion is introduced according

to the given truncation boundary conditions. The expansion coefficients are found by matching

the fields at the interfaces. In TREE method, each expansion function is related to the different

eigenmode supported in the corresponding structure. For simple geometries, the eigenvalues

have simple forms, as in the case of the infinitely long borehole and tube. For more complicated
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geometrical shape, such as the coil at the opening of a borehole, both the series form and the

eigenvalues have to be extended into a broad concept. Due to the hyper-singularity at the

borehole opening, the matrix equations tend to be ill-conditioned. It is critical to have a better

way to solve these matrix equations.

We only applied the axial truncation in this dissertation. It is also possible to make the

truncation in the radial direction for some problems. The choice of the truncation strategy

depends on the problem configuration. With radial truncation, the mode coupling due to a

cylindrical interface should be considered in the eigenvalues, instead of the expansion coeffi-

cients. Therefore the eigenvalue calculation becomes even more important.

The numerical issues related to our crack models are also interesting topics, such as the

analysis of the complex zeros for a given function, the series convergence in a complicated

multiple summation and the convergence acceleration techniques. We believe, with better

method, it is possible to further speed up the whole calculation.

There are still lots of work related to the fastener problem. One is how to deal with the

boundary conditions along a curved surface. The other one is to obtain an approximation

solution using thin crack theory to accelerate the calculation at high frequency. The details

about the hyper-singularity at the borehole edge also need further investigation.
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APPENDIX A. USEFUL MATHMATICAL FORMULAS IN

CYLINDRICAL COORDINATE SYSTEM

Mathematical Identities

Vector Identities

∇×∇ψ = 0,

∇ · ∇ ×A = 0,

∇ · (ψA) = A · ∇ψ + ψ∇ ·A,

∇×∇×A = ∇∇ ·A−∇2A.

Integral Identities

Stokes’ theorem ∮
C

A · dl =

∫
S
∇×A · ds.

Divergence theorem ∮
S

A · ds =

∫
V
∇ ·A dv.

First Green’s identity ∮
V

(
φ∇2ψ +∇φ · ∇ψ

)
dv =

∮
S
φ∇ψ · ds.

Second Green’s identity∮
V

(
φ∇2ψ − ψ∇2φ

)
dv =

∮
S

(φ∇ψ − ψ∇φ) · ds.
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Scalar Decomposition

In cylindrical coordinate system, we define

∇t ≡ ∇− ẑ∂/∂z.

Therefore,

∇2
t = ∇2 − ∂2/∂z2, ∇× ẑ = ρ̂

1

ρ

∂

∂φ
− φ̂ ∂

∂ρ
,

∇×∇× ẑ = −ẑ∇2
t +

∂

∂z
∇t,

∇× I∇2
t = −(∇× ẑ)(∇×∇× ẑ) + (∇×∇× ẑ)(∇× ẑ),

I = ẑẑ +
∇t∇t
∇2
t

+
∇× ẑ∇× ẑ
∇2
t

,

∇∇ = ∇t∇t + (∇tẑ + ẑ∇t) (ẑ · ∇) + ẑẑ (ẑ · ∇)2 .

Gradient, Divergence, Curl and Laplacian

The gradient, divergence, curl, and laplacian defined in cylindrical coordinate are as follows.

∇ψ =
∂ψ

∂ρ
ρ̂+

1

ρ

∂ψ

∂φ
φ̂+

∂ψ

∂z
ẑ,

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

,

∇×A =

(
1

ρ

∂Az
∂φ
−
∂Aφ
∂z

)
ρ̂+

(
∂Aρ
∂z
− ∂Az

∂ρ

)
φ̂+

1

ρ

(
∂(ρAφ)

∂ρ
− ∂Aρ

∂φ

)
ẑ,

∇2ψ =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2

∂2ψ

∂φ2
+
∂2ψ

∂z2
.

Assume a vector field is defined as

B = ∇×∇× (ẑWa) + k2∇× (ẑWb),

where both TE and TM potentials satisfy Helmholtz equation. Then the components of the

vector field B are

Bρ =
∂2Wa

∂ρ∂z
+
k2

ρ

∂Wb

∂φ
,

Bφ =
1

ρ

∂2Wa

∂φ∂z
− k2∂Wb

∂ρ
,

Bz =

(
k2 +

∂2

∂z2

)
Wa.
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APPENDIX B. BOBBIN COIL ABOVE A HALF-SPACE CONDUCTOR

Bobbin coil above a half-space conductor is a classical problem in EC NDE, which have been

completely solved in terms of a closed-form integral using magnetic vector potential theory.

Here, we compare the integral form with the series solution for this problem. It is a good

example to understand the idea of TREE method.

The solution of a circular filament in free space is given first, and then the coil solution is

presented. Both integral form and series form are discussed.

Circular Filament in Free Space

In order to obtain the solution of a coil field in free space, the field of a single current loop,

a filament, is given first. The magnetic vector potential, A, is used to formulate the fields. It

is clear that only azimuthal component, Aφ, exists if the coil is placed along z axis. Assume

the radius of the filament is ρ0 and it is located at z = z0 in the cylindrical coordinate system.

An AC current with magnitude I is flowing in the filament.

Filament Field in Integral Form

The Bessel function of the first kind is chosen to express the field based on the fact that

it is regular on the axis and vanishes as ρ goes to infinity. By using Hankel transform, the

integrand can be found from the jump of the magnetic field at z = z0. The solution has the

form

Aφ(ρ, z) =
µ0Iρ0

2

∫ ∞
0

J1(κρ0)J1(κρ)e−κ|z−z0| dκ. (B.1)

The eigenvalue κ varies continuously from zero to infinity and, thus, the solution involves a

continuous spectrum of eigenvalues.
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An alternative field expression can be derived with Fourier cosine transformation in the

axial direction. The whole domain of the problem can be divided into two regions at the

circularly cylindrical surface passing the filament which is in the plane z = z0. The modified

Bessel functions and cosine function are used to represent the field. Therefore, the complete

form could be found using Fourier cosine transformation and then apply discontinuity condition

to the magnetic field. Finally, the magnetic vector potential of a current loop is given by

Aφ(ρ, z) =
µ0Iρ0

π

∫ ∞
0

I1(υρ<)K1(υρ>) cos[υ(z − z0)] dυ. (B.2)

where ρ> is the greater of ρ and ρ0. Similarly, ρ< is the lesser of ρ and ρ0. It is clear that the

solution is finite at the axis and goes to zero as ρ increases.

Filament Field in Series Form

As stated in Chapter 2, the series solution can be obtained with the aid of TREE method.

The problem domain can be truncated in the axial direction or in the radial direction. Eigen-

values are discretized due to truncation and two kinds of classical series expansion, Fourier

series and Fourier-Bessel series, are used to represent the field, respectively. The solution with

axial truncation is given in Appendix D.

With radial truncation, the solution can be expressed in terms of Fourier-Bessel series.

The domain is truncated at ρ = b. The truncation condition is chosen as PMC, Bt = 0 at

ρ = b. Bessel functions are used to construct the solution and zeros of Bessel functions are the

eigenvalues. In order to find the expansion coefficients, we need the orthogonality properties

for the zeros of Bessel functions. The final expression can be written as

Aφ(ρ, z) =

∞∑
s=1

Iρ0

κs[bJ ′1(κsb)]2
J1(κsρ0)J1(κsρ)e−κs|z−z0|, (B.3)

where eigenvalues κs are positive zeros of J1(κb). Compared with (B.1), the discrete spec-

trum of eigenvalues is involved in (B.3). However, the field behavior is similar and the fields

exponentially decay in the axial direction and vanish as ρ goes to infinity.

The magnetic vector potential, A, is calculated using (B.3) and the equipotential lines are

plotted in Fig. B.1.
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Figure B.1: Equipotential lines of the magnetic vector potential, A on a plane passing through

the axis of the filament.

Coil with Rectangular Cross Section in Free Space

The coil field is obtained using superposition principle from corresponding filament field.

Coil Field in Integral Form

As shown in Fig. B.2, the coil has a rectangular cross section with inner radius r1 and outer

radius r2. Its electric field is given by integrating the filament field over the rectangular cross

section as

E
(0)
φ (ρ, z) = ν

∫ r2

r1

∫ zc+`/2

zc−`/2
Eφ(ρ, z) dρ0 dz0, (B.4)

where Eφ is the filament field, ν is turns density of the coil.

Substituting (B.1) into (B.4), the coil field is given by

E
(0)
φ (ρ, z) =

ıωµ0νI

2

∫ ∞
0

1

κ3
χ(κr1, κr2)F (κ, z)J1(κρ) dκ, (B.5)

where functions F (κ, z) and χ(α1, α2) are defined as
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F (κ, z) = κ

∫ zc+`/2

zc−`/2
e−κ|z−z0| dz0

=



2e−κ(z−zc) sinh(κ`/2) z > zc + `/2

2
{

1− e−κ`/2 cosh[κ(z − zc)]
}

zc + `/2 ≤ z ≤ zc + `/2

2eκ(z−zc) sinh(κ`/2) z < zc − `/2

(B.6)

and

χ(α1, α2) =

∫ α2

α1

xJ1(x) dx

=
π

2α
[J1(α)H0(α)− J0(α)H1(α)] |α2

α1
. (B.7)

Here Hν are the Struve functions.

Coil Field in Series Form

Similarly, the same idea can be applied to the series form (B.3) and we have

E
(0)
φ (ρ, z) =

∞∑
s=1

ıωνI

κ4
s[bJ

′
1(κsb)]2

χ(κsr1, κsr2)F (κs, z)J1(κsρ). (B.8)

The electric field is calculated using (B.8) and the field on the plane passing through the axis

of the coil is shown in Fig. B.2.

Figure B.2: Magnetic field of a coil with rectangular cross section in free space.
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Self-Inductance of an Isolated Coil in Free Space

The self-inductance of this rectangular coil can be derived based on the definition of the

voltage. The voltage induced by electric field E in a length of wire is

V = −
∫
C

E · d`, (B.9)

where the path integral C is along the wire. For a coil with rectangular cross section, the

impedance of an isolated coil is

Z0 =
V

I
= −2πν2

∫ r2

r1

∫ zc+`/2

zc−`/2
ρ0E

(0)
φ (ρ, z) dρ0 dz0. (B.10)

By substituting (B.5) to (B.10),the self-inductance is obtained as

L =
Z0

ıω
= 2πµ0ν

2

∫ ∞
0

dκ χ2(κr1, κr2)κ−6
(
κ`+ e−κ` − 1

)
. (B.11)

Bobbin Coil above a Half-Space Conductor

For the incident field of a bobbin coil above a conductive half space, the formula is obtained

by introducing a reflection coefficient due to the presence of the conductor.

Electric Field for a Coil above a Half-Space Conductor

The electric field of a bobbin coil above a half space can be written as

Eφ(ρ, z) =
ıωµ0νI

2

∫ ∞
0
J (κ)

[
eκz − Γ(κ)e−κz

]
J1(κρ) dκ, (B.12)

where Γ(κ) is the reflection coefficient due to the presence of the conductor and have the form

Γ(κ) =
λ− κ
λ+ κ

. (B.13)

Here λ2 = κ2 + k2. This reflection coefficient is found from the continuity of the tangential

electric and magnetic fields at the interface of the conductor.

The magnitude of electric field in the conductor, which is proportional to the eddy-current

density, is shown in Fig. B.3.
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Figure B.3: Distribution of eddy-current density for a cylindrical coil above a half space.

Impedance Change due to a Conductive Half Space

The impedance change of the coil due to a half-space conductor can be calculated from the

induced electric field due to eddy currents in the conductor. The impedance change of the coil

is given by

∆Z = −2πν2

I2

∫ zc+`/2

zc−`/2
ρ0E

(ec)
φ (ρ, z) dρ0 dz0, (B.14)

where E(ec) is the electric field due to the induced eddy current, i.e. the second term in (B.12)

and the final solution is

∆Z = −ıπωµ0ν
2

∫ ∞
0

dκ
χ2(κr2, κr1)

κ6
Γ(κ)

(
e−κz1 − e−κz2

)2
. (B.15)
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APPENDIX C. COIL IMPEDANCE CHANGE DUE TO CRACKS IN A

HALF-SPACE CONDUCTOR

TREE method provides a fast approach to solve the coil impedance change due to a crack in

a half-space conductor. Theodoulidis, Poulakis, and Dragogias use a double truncation strategy

to express the Green’s function in terms of a double summation [124]. We summarize their

solutions here for reference. The Green’s function is divided into a term due to a point source

in unbounded domain and a term due to the reflection. The same crack model is used in this

work. The schematic is the same as Fig. 4.8.

Unbounded Domian Kernel

Assume the source point is at the origin in Cartesian coordinate, then the scalar Green’s

function in homogeneous domain can be written as

G0(r|r′) =
eıkR

4πR
, R =

√
x2 + y2 + z2. (C.1)

For a crack perpendicular to the x-axis, the unbounded domain kernel is

G(0)
xx =

(
1 +

1

k2

∂2

∂x2

)
G0(r|r′)

=
eıkR

4πk2R

(
k2 +

ık

R
− 1 + k2x2

R
− 3ıkx2

R3
+

3x2

R4

)
. (C.2)

Thus, the corresponding matrix element in volume integral method is given by

M(0) = k2

∫ ∆x

0

∫ y+∆y/2

y−∆y/2

∫ z+∆z/2

z−∆z/2
G(0)
xx dx dy dz. (C.3)

If the source is far away from the source point, this triple integral is easy to compute. For

the singular source point, the following coordinate variable transformation is introduced to
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overcome the hypersingularity of the diagonal terms in the matrix. By letting

y = r cosϕ, z = r sinϕ, (C.4)

we have

M(0) =
k2

π

∫ ∆x

0
dx

[∫ ϕ1

0
dϕ

r2
y(1− ıkRy)eıkRy

R3
y

+

∫ π/2−ϕ1

0

r2
z(1− ıkRz)eıkRz

R3
z

]
, (C.5)

where

ry =
∆y

2 cosϕ
, rz =

∆z

2 cosϕ
, (C.6)

and

Ry =
√
x2 + r2

y, Rz =
√
x2 + r2

z , ϕ1 = arctan
∆y

∆z
. (C.7)

Reflection Matrix Element

The reflection term can be obtained by applying the TREE method. The domain is trun-

cated in x direction from 0 to hx and in y direction from 0 to hy, assume the source dipole is

located at x0 = hx/2, y0 = hy/2, z0 = 0. The reflection term can be written as

G(Γ)
xx =

2

hxhy

∞∑
i=1

∞∑
j=1

eλij(z+z0)

κ2
ijλij

(
k2v2

j

λij − κij
λij + κij

− u2
iλij

2

)
sin(uix) sin(uix0) sin(vjy) sin(vjy0),

(C.8)

with

ui =
2i− 1

2hx
π, vj =

2j − 1

2hy
π, (C.9)

and λ2 = κ2 − k2. Integrating over a single crack cell, the following terms are needed in the

matrix element calculation.∫ z0+∆z/2

z0−∆z/2
eλijz0 dz0 =

2eλijz0

λij
sinh

(
λij

∆z

2

)
, (C.10)

1

∆x

∫ x0+∆x

x0

sin(uix0) dx0 =
2

ui∆x
sin

(
ui∆x

2

)
sin

[
ui

(
x0 +

∆

2

)]
, (C.11)

and ∫ y0+∆y/2

y0−∆y/2
sin(vjy0) dy0 =

2

vj
sin

(
vj∆y

2

)
sin (vjy0) . (C.12)
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APPENDIX D. COILS INSIDE A BOREHOLE

The impedance change of a coil inside a borehole has been solved in integral form by Burke

and Theodoulidis in 2004 [83] and in series form in 2007 [93]. Here, a different series form with

the same truncation boundary conditions used before is given as a reference. This solution is

used as the incident field calculation for the crack model.

Consider a coil inside a borehole in the absence of cracks, Fig. D.1. The problem has been

stated in Chapter 4. The truncation conditions are the same as the ones we imposed before.

The Fourier series representation of TE and TM potentials for the region between the coil and

the cylindrical interface can be written as

W̃ (0)
am =

∞∑
i=1

sin(κiz)Km(κiρ)C
(0)
mi , (D.1)

Figure D.1: A rotary coil inside a borehole.
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due to the source and

W̃ (1)
am =

∞∑
i=1

sin(κiz)Im(κiρ)C
(1)
mi , (D.2)

due to the reflection. The TE and TM potentials representing the fields in the conductive

region are expressed as

W̃ (2)
am =

∞∑
i=1

sin(κiz)Km(γiρ)C
(2)
mi , (D.3)

and

W̃
(2)
bm =

∞∑
i=1

cos(κiz)Km(γiρ)D
(2)
mi , (D.4)

where eigenvalues κi = (2i− 1)π/2h and γ2
i = κ2

i − k2.

By imposing the continuity conditions of magnetic fields at the interface ρ = b, we can

determine the unknown coefficients as follows.

C
(1)
mi = ΓaamiC

(0)
mi , C

(2)
mi = T aamiC

(0)
mi , D

(2)
mi = T ba

miC
(0)
mi , (D.5)

where

Γaami = −Km(κib)

Im(κib)

{
µrk

2m2 −Mm(γib)[µrκ
2
iMm(γib)− γ2

iMm(κib)]
}

∆−1
m ,

T aami =
µrκ

2
iMm(γib)

Im(κib)Km(γib)∆m
, T bami =

ımκiµr
Im(κib)Km(γib)∆m

. (D.6)

∆m has been introduced in (4.54).

The impedance change of an induction coil inside the borehole is given by

∆Z =
ıω

µ0I2

∫ h

0

∫ π

−π

[
ψ(1)∂ψ

(0)

∂ρ
− ψ(0)∂ψ

(1)

∂ρ

]
ρ=b

b dφ dz

=
ıωπh

µ0I2

∞∑
m=−∞

∞∑
i=1

κ2
iC

(0)
miC

(1)
mi , (D.7)

where ψ is the magnetic scalar potential defined in (6.5).

The incident field distribution is required in the crack problem and the general expressions

for the eddy current density components in the conductor are

Jρ = ıωσ
∞∑

m=−∞
eımφ

∞∑
i=1

sin(κiz)

[
ım

ρ
Km(γiρ)C

(2)
mi − κiγiK

′
m(γiρ)D

(2)
mi

]
, (D.8)

Jφ = −ıωσ
∞∑

m=−∞
eımφ

∞∑
i=1

sin(κiz)

[
γiK

′
m(γiρ)C

(2)
mi +

ım

ρ
κiKm(γiρ)D

(2)
mi

]
, (D.9)

Jz = −ıωσ
∞∑

m=−∞
eımφ

∞∑
i=1

γ2
i cos(κiz)Km(γiρ)D

(2)
mi . (D.10)
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The source coefficients, C
(0)
mi are determined by expressing the TE potential in the absence

of conductors. There is no TM component involved for a coil in free space and TE potential

satisfies Laplace equation. The field of a filament loop is equivalent to that of an infinitesimally

thin magnetic shell at the surface bounded by the filament [94]. The potential expression of a

filament is found by applying the Green’s second theorem to the surface enclosing the magnetic

disk. Finally, according to the superposition principle, the coil field is obtained by integrating

over the rectangular cross section of the coil and the coefficients are

C
(0)
mi = −4νµ0I

πh

cos 9κiz0)

κ4
i

∞∑
n=−∞

Ψm−n(κx2, κx1)Ξn(κr2, κr1), (D.11)

where

Ψm(α1, α2) =

∫ α2

α1

Im(x) dx, (D.12)

and

Ξn(α1, α2) = n sin(nπ/2)

∫ α2

α1

∫ ν

0

1

ξ
In(ξ) sin

√
ν2 − ξ2 dξ dν. (D.13)

The same approach can be used to determine the source coefficients for a bobbin coil. The

solution is

C
(0)
mi = −4νµ0I

hκ3
i

χ(κir1, κir2)Im(κir0) sin(κiz0) sin

(
κi`

2

)
, (D.14)

where χ is defined in (B.7).
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APPENDIX E. BOUNDARY INTEGRAL EQUATION FOR

EDDY-CURRENT PROBLEMS WITH DIRICHLET BOUNDARY

CONDITION

A paper published in Journal of Nondestructive Evaluation1

Hui Xie2,3,4, Jiming Song2,5, Ming Yang2, Norio Nakagawa3

Abstract

A boundary integral equation (BIE) is developed for the eddy-current (EC) problems with

Dirichlet boundary condition by considering the difference between the field without cracks

and the one with cracks. Once the field and its normal derivative are given for the structure in

the absence of cracks, normal derivative of the scattered field on the surface can be calculated

by solving this integral equation numerically. For infinite-domain problems, this equation is

more efficient than the conventional BIE due to a smaller computational region needed. Four

kinds of two-dimensional EC problems have been solved using this integral equation. The

surface impedance for different cases is presented in this paper. Numerical results are compared

with analytical solutions and published numerical results. There are good agreements between

them. Also, this concept can be extended to three-dimensional problems with other boundary

conditions.

1This work was supported in part by the National Science Foundation CAREER Grant ECS-0547161 and in
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3Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50011, USA.
4Primary researcher and author.
5Primary researcher and corresponding author, e-mail:jisong@iastate.edu.
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Introduction

Boundary element method (BEM) is one of widely used numerical approaches for solving

eddy-current (EC) problems due to its high efficiency and the ability to handle complex ge-

ometries [6]. With different boundary integral formulations, this approach has been applied to

many kinds of EC problems to investigate the eddy-current interaction with cracks [69, 70, 68].

In contrast, other numerical methods, such as finite element method (FEM) and volume inte-

gral method, are very expensive to analyze EC problems due to the need of dealing with high

conductivity at low frequency. Besides this, BEM is applicable not only to the problems with

bounded region but also to the infinite-domain problems.

The key part of BEM is to find appropriate boundary integral equations (BIEs). For various

EC problems, different BIEs should be derived to take the advantage of crack models. The ideal

crack is a mathematical model which is defined as a surface crack of infinitesimal thickness. The

BEM has been applied to this crack model for different inclination in a uniform applied field

by Kahn [65]. Nonetheless, only the sum of the surface impedance on both sides of the ideal

crack could be solved using Kahn’s equation. The v-groove crack model in a nonuniform field

was also investigated in that work. Beyond this, the ideal crack can be modeled as a current

dipole layer on the crack surface and the radiated field can be viewed as being generated by

this dipole layer because of zero thickness. An electric field integral equation (EFIE) has been

formulated to find the dipole density for the ideal crack [40, 74]. In addition, BIEs for the

magnetic vector potential have been developed using an complicated integral kernel with a

weaker singularity than that of the EFIE approach [42]. By combining the variational method

with BEM, Nakagawa et al. have studied the effect of crack closure, which may produce weak

but finite electrical contacts inside the thin crack [125]. However, these BIEs are only valid for

the thin crack model, in which crack thickness is quite small compared with other dimensions

and the skin depth.

On the other hand, the ideal crack model, due to its simple geometric structure, has been an-

alytically investigated in some EC problems. For a deep crack, this model involves eddy-current

interaction with the sharp tip and the square corner. Kahn et al. have analytically solved the
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semi-infinite crack problem, which is a special case of the thin crack model, with modification

of Sommerfeld’s diffraction theory and the square corner problem with image theory [33]. An

approximate closed form solution for a long, surface-breaking crack has been obtained using

the Wiener-Hopf technique by Harfield and Bowler [46]. A infinitely long conducting cylinder

with a radial crack has also been analyzed in terms of a series of Bessel functions by Spal and

Kahn [34].

In order to efficiently solve more general EC problems for both bounded and infinite region

with less number of unknowns, a BIE for the magnetic field is proposed in this paper. The

formulation is based on the solution for the structure in the absence of cracks. In combination

with the method of moments (MoM), this integral equation can be solved numerically. The

proposed BIE provides an easier way to truncate the unbounded computational domain without

adding any extra hypothetical boundaries. Here, the crack models mentioned above, including

thin crack and v-groove crack models, are used to examine this approach.

Formulation

General Formulation

For the sake of simplicity, two-dimensional (2D) EC problems with surface crack are con-

sidered. Assume the conductor is nonmagnetic material, which has the permeability of free

space µ0 and the conductivity σ. A uniform magnetic field H0, which has only a z component,

is applied to the crack as shown in Fig. E.1. Here, time factor e−ıωt is suppressed. In the

conductor, total magnetic field H(ρ) satisfies the scalar Helmholtz equation

(∇2 + k2)H(ρ) = 0, (E.1)

where k2 = ıωµ0σ. The corresponding BIE can be written as∫
S

dS(ρ′)G(ρ,ρ′)
∂H(ρ′)

∂n′
= H(ρ) +H0

∫
S

dS(ρ′)
∂G(ρ,ρ′)

∂n′
,

where n is the normal direction of the boundary surface, S, and G(ρ,ρ′) is the Green’s

function for 2D Helmholtz wave equation, which is given by

G(ρ,ρ′) =
ı

4
H

(1)
0 (k|ρ− ρ′|),
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Figure E.1: Schematic configuration of the surface crack problems with uniform applied field,

H0. H i(ρ) is the incident magnetic field in the absence of cracks. Sc and Sg represent crack

surface and “gap” surface, respectively.

where H
(1)
0 (z) is the Hankel function of the first kind of zero order. If ρ approaches the surface

S, (E.2) has the following form∫
S

dS(ρ′)G(ρ,ρ′)
∂H(ρ′)

∂n′
=

1

2
H0 +H0

∫
S

dS(ρ′)
∂G(ρ,ρ′)

∂n′
.

Here, all integrals in (E.2) are based on principal values. This equation is referred to as

the conventional BIE in the following discussion. For the problems with infinite domain, the

integral should be performed over the whole surface S (including crack surface Sc) when (E.2)

is solved. Several extra long enough hypothetical boundaries should be needed to truncate the

computational domain if numerical methods are applied to this equation.

Now let us rewrite the total magnetic field as

H(ρ) = H i(ρ) +Hs(ρ), (E.2)

where H i(ρ) is the incident magnetic field, the field in the absence of the crack, and Hs(ρ) is

the magnetic field scattered by the crack. The incident field also satisfies (E.2) except only for

the surface without cracks. Therefore, the BIE for the scattered filed, Hs(ρ), can be derived

by combining (E.2) and the BIE for the incident magnetic field∫
S

dS(ρ′)G(ρ,ρ′)
∂Hs(ρ′)

∂n′
= H inc(ρ) +

∫
Sc−Sg

dS(ρ′)

[
H0

∂G(ρ,ρ′)

∂n′
−G(ρ,ρ′)

∂H i(ρ′)

∂n′

]
,
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where

H inc(ρ) =


1
2H0 −H i(ρ) ρ ∈ Sc

0 ρ ∈ S exceptSc

(E.3)

and the subscript of the integral on the right hand side of (E.3), Sc−Sg, represents subtracting

the integral over Sg from that over Sc. The “gap” region Sg is the surface without cracks

excluding the part which overlaps with the whole surface S, as shown in Fig. E.1. The right

hand side of (E.3) just involves a smaller computational region compared with (E.2) and its

value goes to zero when the point ρ is far away from the crack region. To solve (E.3), we only

need to truncate the computational domain without adding any extra boundaries. Apparently,

it is more efficient and faster than using (E.2) to solve EC problems. More detailed discussion

is given in Section E.

Ideal Crack

As stated above, the ideal crack, which acts as a perfect barrier to the flow of eddy current,

has infinitesimal thickness. Thus, only the sum of the fields on opposite sides of the crack,

Hs
+ −Hs

−, can be solved. Here, subscripts, ±, refer to limiting values approaching each side of

the crack surface S±, as shown in Fig. E.2. The integral over surface Sg is equal to zero due

to the infinitesimal thickness. Finally, (E.3) can be reduced to

∫
Sc

G
∂(Hs

+ −Hs
−)

∂n′
dS +

∫
S except Sc

G
∂Hs

∂n′
dS =


H0 −H i(ρ) ρ ∈ Sc

0 ρ ∈ S exceptSc

(E.4)

which is the same as the formulation derived by Kahn [65]. Notice that half of H0 is added

to H inc(ρ) in (E.3) for the point over the crack surface Sc, because the contribution from the

point on the opposite side of the crack, which introduces another principal value, should be

considered when crack thickness goes to zero.

The concept we demonstrate in this paper is similar to the one mentioned in [65]. The

problems discussed here, however, are more general and the surface impedance on both sides

of the thin crack can be calculated separately. That is the reason why (E.3) can be reduced
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Figure E.2: Normal derivative of the scattered field on the plane surface for a perpendicular

crack (θ = 0◦) with depth d = 4δ. Values are normalized by the surface impedance for the

half-space conductor. Numerical results calculated from proposed (solid line) and conventional

(circle) BIEs are shown. Inset: configuration of the thin crack in a half-space conductor (Surface

S+ and S− are the upper and lower surfaces of the crack, respectively).

to (E.4) for the ideal crack model, in which the surface impedance on both sides of the crack

should be calculated together.

Numerical Results

The proposed BIE is discretized into matrix equation by virtue of the MoM [106]. Pulse basis

and point-matching (collocation) method are used in our code. Matrix element is evaluated

with standard six-point Gaussian quadrature rule [109] or the one incorporating logarithmic

singularities [107]. Based on the given incident field, H i(ρ), and its normal derivative, ∂H i/∂n,

our program is implemented allowing for arbitrary surface crack in the conductor with simple

structure, such as a half-space plane, an infinitely long cylinder, or a thin metal sheet. Four

kinds of two-dimensional EC problems are tested in our work: a thin crack or a v-groove crack

in the half-space conductor and a surface crack in the conducting cylinder or the quarter-space

conductor. Normal derivative of the scattered field ∂Hs/∂n is calculated first from (E.3). Then
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normal derivative of the total field ∂H/∂n, which is proportional to the surface impedance due

to the uniform applied magnetic field, is obtained by adding the contribution from the incident

field ∂H i/∂n together according to (E.2).

In order to verify our formulation and program, a thin crack in the half-space conductor

is examined first. The configuration is briefly summarized in the inset of Fig. E.2. The depth

of the crack is d and the angle between the crack surface and the normal of the plane surface

is θ. All the lengths are normalized by the skin depth δ. The incident field for the half-space

conductor is H i(ρ) = H0e
ıkx. In our implementation, the tip of the thin crack is modeled as

one single element.

Figure E.2 shows the normal derivative of scattered field over the plane surface for the

case with d = 4δ and θ = 0◦. Numerical results calculated from the conventional BIE with

domain truncation are also plotted for comparison. Results are normalized by the surface

impedance for the half-space conductor, −ıkH0. Curves in Fig. E.2 clearly indicate the eddy-

current interaction with a square corner can extend to about 2.5δ. Thus, at least a range of

5δ is needed to separate the mutual influence between two neighbor corners. In solving the

conventional BIE, the solution domain should be truncated to a 10× 15δ2 rectangle to ensure

the correctness of the results for this case. As a result, the evaluation of integrals in (E.2)

should be implemented over a length of about 58δ, but 18δ is enough for the proposed BIE.

This means a large computational region and a lot of extra unknowns should be required if

the conventional BIE with domain truncation, which introduces several corners to truncate the

infinite region, is used to solve this kind of problems. Computational region, however, can be

just confined to the region one needs without adding any hypothetical boundaries using (E.3).

The number of unknowns and CPU time also can be significantly decreased.

The error due to domain truncation should be considered if the proposed BIE is used to

solve infinite-domain problems. For the same case (d = 4δ, θ = 0◦), the results with different

truncated lengths are compared. Here, truncated length l denotes the distance from truncated

boundary to the crack, as shown in Fig. E.2. By choosing the result with l = 20δ as a

reference, absolute errors for corresponding point with different truncated lengths are illustrated

in Fig. E.3. The accuracy is improved when the truncated length increases. Because of domain
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Figure E.3: Absolute error in the normalized surface impedance, ∂H
∂n /(−ıkH0), on the plane

surface for different truncated length l (d = 4δ, θ = 0◦). The result with l = 20δ is chosen as

the reference.

truncation, the error for the points close to the truncated boundary is greater than those close

to the crack.

Figure E.4 shows a comparison of the normalized surface impedance, ∂H
∂n /(−ıkH0), on the

crack surface calculated from (E.3) and Kahn’s results [65] for the same case as that of Fig. E.2

with θ = 0◦. In our program, surface impedance on each side of the thin crack is calculated

separately. Then the average of them is taken to compare with Kahn’s results. Due to the

symmetry of this structure, surface impedance on the upper crack surface S+ and the lower

one S− are the same as their average value. These numerical results are also compared with

analytical solutions for two limiting cases: infinitely deep crack (for 2.5 < s/δ < 4) and a

square corner (for 0 < s/δ < 2) [33]. There are good agreements when the crack is deep

enough so that contributions from tip and corner can be separated with each other. When the

crack depth is relatively small, they can not be treated separately. So the analytical solution

of these two limiting cases should not to be used to check the numerical results. Nonetheless,

results calculated from the conventional BIE can be used to make a comparison. Our numerical

results also have good agreements with Kahn’s [65] for cases with d = δ or 0.5δ. It should be
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Figure E.4: Normalized surface impedance on the crack surface for a perpendicular crack with

depth d = 4δ. The results (solid line) are calculated using the proposed BIE. Kahn’s results

[65] for the ideal crack (plus sign) are plotted. The analytical solution for the infinitely deep

crack (triangle) and square corner (circle) are also shown for comparison.

noticed that our results come from the thin crack model, while the ideal crack model was used

in Kahn’s calculation.

Figures E.5 and E.6 show the normalized surface impedance for the case with d = 3δ

and θ = 30◦. Fig. E.5(a) shows the surface impedance on both sides of the crack separately.

Different current distribution can be observed due to the asymmetrical structure. The change

of eddy current becomes more rapid around the sharp corner. Fig. E.5(b) shows the average

of surface impedances on both sides for each sampling point. Kahn’s results [65] for the ideal

crack with same depth are also plotted for comparison. Again, the slight difference between

them comes from the different crack models used, i.e. the difference between the thin crack

and the ideal crack. Fig. E.6 shows the normalized surface impedance over the plane surface

compared with Kahn’s results [65]. It is clear to see the disturbance of eddy current stretches

out further in the positive y-direction, which is the direction of the crack inclination.

For the second comparison, a v-groove crack in the half-space conductor is considered to

check the terms associated with the integral over “gap” surface Sg in (E.3). The configuration
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Figure E.5: Normalized surface impedance over the crack surface for a crack with d = 3δ and

θ = 30◦. The results on both sides of the crack (a) and the average value of them (b) are

plotted. Also Kahn’s results [65] for the ideal crack (circle) are shown in (b).
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Figure E.6: Comparison of results from Kahn (circle) [65] and the proposed BIE (solid line)

for the normalized surface impedance on the plane surface: d = 3δ and θ = 30◦.

is illustrated in Fig. E.7(a). The depth of the crack is D and the half width of the opening is

F . Incident field is the same as that for the preceding structure. Fig. E.7 shows the normalized

surface impedance over both the crack surface and the plane surface for the case with D = 2δ

and F = 0.25δ. Numerical results are compared with those obtained from the conventional

BIE with large enough truncated domain. A length of 45δ is needed for this calculation with

the conventional BIE, whereas one-quarter of this length is sufficient for the proposed equation.

The improvement of the efficiency is obvious.

Another example we use is a thin crack in the infinitely long, conducting cylinder, as shown

in Fig. E.8. The radius of the cylinder a and the depth of the crack d are equal to the skin

depth. A single element is used to model the tip of the crack, which is the same as that for the

half-space conductor. Fig. E.8 shows a comparison between numerical and analytical results

for the surface impedance on both crack surface and cylinder surface. The value is normalized

by the surface impedance for a conducing cylinder in the absence of cracks. Analytical solution

is calculated from equations given in [34]. Due to limited computational region, the efficiency

of proposed BIE is the same as that of the conventional BIE.
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Figure E.7: Normalized surface impedance on both crack surface (a) and plane surface (b) for

a v-groove crack with depth D = 2δ and half-opening F = 0.25δ. The results calculated from

proposed (solid line) and conventional (circle) BIEs are shown for comparison.
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Figure E.8: Comparison of numerical result (solid line) and analytical solution (circle) for the

normalized surface impedance on both crack surface (a) and cylinder surface (b), d = a = 1δ.
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Finally, numerical results for a thin crack in the quarter-space conductor with different

depth are shown in Fig. E.9. The angle between crack surface and horizontal plane is θ. The

incident field and its normal derivative used in (E.3) are solved analytically by image theory

[33]. Again, comparisons are made with the results calculated from the conventional BIE. The

results for a crack in the half-space conductor with the same inclination angle (θ = 45◦) are

also plotted. It is reasonable to see the results agree well with each other when the crack depth

is long enough (d = 8δ is used here) as shown in Figs. E.9(a) and E.9(b), whereas the effect

on account of square corner can be observed when the crack becomes shorter as illustrated

in Figs. E.9(c) and E.9(d). Fig. E.9(d) indicates about 3δ should be considered to separate

the interaction between two neighbor corners and roughly 8 × 8δ2 truncated area should be

included for the conventional BIE. Therefore, a length of 10δ for the proposed equation is still

much smaller than that for the conventional BIE.

The number of unknowns N assigned in the above infinite-domain cases are listed in Ta-

ble E.1. The inverse matrix is obtained using the direct solver. The matrix-filling time, as well

as the memory requirement are proportional to the square of the number of unknowns, O(N2),

assuming the incident field can be directly calculated using analytical solution. As can be seen

from this table, the advantage of the proposed BIE is obvious.

Table E.1: Number of unknowns computed in five infinite-domain cases.

Number of unknowns, N Conventional BIE Proposed BIE

Thin crack in half space
870 270

(Fig. E.2, d = 4δ, θ = 0◦)

Thin crack in half space
810 195

(Fig. E.2, d = 3δ, θ = 30◦)

V-groove crack in half space
675 180

(Fig. E.7(a), F = 0.25δ, D = 2δ)

Thin crack in quarter space
960 480

(Fig. E.9(a), d = 8δ, θ = 45◦)

Thin crack in quarter space
570 150

( Fig. E.9(a), d = 3δ, θ = 45◦)
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Figure E.9: Normalized surface impedance of cases with d = 8δ, θ = 45◦ (a, b) and d = δ,

θ = 45◦ (c, d). Numerical results from proposed (solid line) and conventional (circle) BIEs are

shown. The results for the surface crack in a half-space conductor with same inclination angle

(plus sign) are also plotted.
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Conclusion

A BIE has been proposed to solve two-dimensional EC problems for the given incident field

and its normal derivative. The formulation, implemented with the MoM, has been validated

with analytical results and published numerical data for different kinds of 2D structures. This

approach not only can be used to solve infinite-domain problems without adding any hypo-

thetical boundaries, but also is more efficient than the conventional BIE because of a smaller

computational domain needed. In addition, surface impedance on each side of the thin crack

can be calculated separately through our proposed BIE. It is certainly helpful to understand

the interaction between eddy current and cracks. Despite the EC problems over a finite com-

putational domain can not be accelerated with this approach, the computational speed for the

infinite-domain problem can be improved a lot without too much extra programming effort.

Although the structures discussed in this paper pertain to two-dimensional EC problems

with Dirichlet boundary condition, the concept described here can be similarly applied to

three-dimensional structures and other boundary conditions to reduce the number of unknowns.

However, the incident field without cracks H i(ρ) in (E.2) needs to be calculated using numerical

method for the problems with complex geometric boundary.
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